메뉴 건너뛰기




Volumn 66, Issue 1, 1997, Pages 21-40

The asymptotic behavior of quadratic forms in heavy-tailed strongly dependent random variables

Author keywords

Linear processes; Long range dependence; Quadratic forms; Stable processes

Indexed keywords


EID: 0031067262     PISSN: 03044149     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0304-4149(96)00123-8     Document Type: Article
Times cited : (10)

References (14)
  • 4
    • 0000074862 scopus 로고
    • Limit theory for the sample covariance and correlation functions of moving averages
    • R.A. Davis and S.I. Resnick, Limit theory for the sample covariance and correlation functions of moving averages, Ann. Statist. 14 (1986) 533-558.
    • (1986) Ann. Statist. , vol.14 , pp. 533-558
    • Davis, R.A.1    Resnick, S.I.2
  • 5
    • 0002188727 scopus 로고
    • Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series
    • R. Fox and M.S. Taqqu, Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series, Ann. Statist. 14 (1986) 517-532.
    • (1986) Ann. Statist. , vol.14 , pp. 517-532
    • Fox, R.1    Taqqu, M.S.2
  • 6
    • 0001340698 scopus 로고
    • Central limit theorems for quadratic forms in random variables having long-range dependence
    • R. Fox and M.S. Taqqu, Central limit theorems for quadratic forms in random variables having long-range dependence, Probab. Theory Related Fields 74 (1987) 213-240.
    • (1987) Probab. Theory Related Fields , vol.74 , pp. 213-240
    • Fox, R.1    Taqqu, M.S.2
  • 7
    • 0001898682 scopus 로고
    • A central limit theorem for quadratic forms in strongly dependent linear variables and application to asymptotical normality of whittle's estimate
    • L. Giraitis and D. Surgailis, A central limit theorem for quadratic forms in strongly dependent linear variables and application to asymptotical normality of Whittle's estimate, Probab. Theory Related Fields 86 (1990) 87-104.
    • (1990) Probab. Theory Related Fields , vol.86 , pp. 87-104
    • Giraitis, L.1    Surgailis, D.2
  • 9
    • 85033074167 scopus 로고    scopus 로고
    • The integrated periodogram for stable processes
    • C. Klüppelberg and T. Mikosch, The integrated periodogram for stable processes, to appear in: Ann. Statist.
    • Ann. Statist.
    • Klüppelberg, C.1    Mikosch, T.2
  • 10
    • 0010928899 scopus 로고
    • The integrated periodogram for long-memory processes with finite or infinite variance
    • P. Kokoszka and T. Mikosch, The integrated periodogram for long-memory processes with finite or infinite variance, Preprint (1995); to appear in: Stochastic Processes Appl.
    • (1995) Stochastic Processes Appl.
    • Kokoszka, P.1    Mikosch, T.2
  • 11
    • 85033094526 scopus 로고    scopus 로고
    • Parameter estimation for infinite variance fractional ARIMA
    • P.S. Kokoszka and M.S. Taqqu, Parameter estimation for infinite variance fractional ARIMA, to appear in: Ann. Statist.
    • Ann. Statist.
    • Kokoszka, P.S.1    Taqqu, M.S.2
  • 12
    • 21844492815 scopus 로고
    • Parameter estimation for ARMA models with infinite variance innovations
    • T. Mikosch, T. Gadrich, C. Klüppelberg and R.J. Adler, Parameter estimation for ARMA models with infinite variance innovations, Ann. Statist. 23 (1995) 305-326.
    • (1995) Ann. Statist. , vol.23 , pp. 305-326
    • Mikosch, T.1    Gadrich, T.2    Klüppelberg, C.3    Adler, R.J.4
  • 13
    • 0000697885 scopus 로고
    • Multilinear forms in Pareto-like random variables and product random measures
    • J. Rosiński and W.A. Woyczynski, Multilinear forms in Pareto-like random variables and product random measures, Coll. Math. 51 (1987) 303-313.
    • (1987) Coll. Math. , vol.51 , pp. 303-313
    • Rosiński, J.1    Woyczynski, W.A.2
  • 14
    • 84953751498 scopus 로고
    • Cambridge Univ. Press, Cambridge
    • A. Zygmund, Trigonometric Series, Vols. I, II. (Cambridge Univ. Press, Cambridge, 1979).
    • (1979) Trigonometric Series , vol.1-2
    • Zygmund, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.