-
1
-
-
0003607253
-
-
Cambridge Univ. Press, Cambridge
-
[AC] M.J. Ablowitz and P.A. Clarkson, Solitons, Non-linear Evolution Equations and Inverse Scattering, LMS Lecture Note Series, Vol. 149 (Cambridge Univ. Press, Cambridge).
-
Solitons, Non-Linear Evolution Equations and Inverse Scattering, LMS Lecture Note Series
, vol.149
-
-
Ablowitz, M.J.1
Clarkson, P.A.2
-
2
-
-
0001893772
-
Quantization and uniqueness of invariant structures
-
[A] W. Averson, Quantization and uniqueness of invariant structures, Comm. Math. Phys. 89 (1983) 77-102.
-
(1983)
Comm. Math. Phys.
, vol.89
, pp. 77-102
-
-
Averson, W.1
-
3
-
-
0002442954
-
Deformations as quantisations, I, II
-
[BFFLS] F. Bayen, M. Flato, C. Fronsdal, A. Lichnewowicz and D. Sternheimer, Deformations as quantisations, I, II, Ann. Physics 111 (1978) 61-110, 111, 151.
-
(1978)
Ann. Physics
, vol.111
, pp. 61-110
-
-
Bayen, F.1
Flato, M.2
Fronsdal, C.3
Lichnewowicz, A.4
Sternheimer, D.5
-
7
-
-
4243485188
-
The Hamiltonian structure of the dispersionless Toda hierarchy, solv-int 9502003
-
to appear
-
[FS] D.B. Fairlie and I. A.B. Strachan, The Hamiltonian structure of the dispersionless Toda hierarchy, solv-int 9502003, Physica D, to appear.
-
Physica D
-
-
Fairlie, D.B.1
Strachan, I.A.B.2
-
8
-
-
84972506966
-
A simple geometrical construction of deformed quantization
-
[Fe] B. Fedosov, A simple geometrical construction of deformed quantization, J. Differential Geom. 140 (1994) 213-238.
-
(1994)
J. Differential Geom.
, vol.140
, pp. 213-238
-
-
Fedosov, B.1
-
10
-
-
0000066016
-
The uniqueness of the Moyal algebra
-
[F1] P. Fletcher, The uniqueness of the Moyal algebra, Phys. Lett. B 248 (1990) 323-328.
-
(1990)
Phys. Lett. B
, vol.248
, pp. 323-328
-
-
Fletcher, P.1
-
11
-
-
0010875808
-
From principal chiral model to self-dual gravity
-
hep-th/9509092
-
[G-CPP] H. Garcia-Compean, J.F. Plebanski and M. Przanowski, From principal chiral model to self-dual gravity, CINVESTAV-FIS-17/95, hep-th/9509092; Further remarks on the chiral models approach to self-dual gravity, CINVESTAV-FIS-22/95, hep-th/9512013.
-
CINVESTAV-FIS-17/95
-
-
Garcia-Compean, H.1
Plebanski, J.F.2
Przanowski, M.3
-
12
-
-
0010798065
-
Further remarks on the chiral models approach to self-dual gravity
-
hep-th/9512013
-
[G-CPP] H. Garcia-Compean, J.F. Plebanski and M. Przanowski, From principal chiral model to self-dual gravity, CINVESTAV-FIS-17/95, hep-th/9509092; Further remarks on the chiral models approach to self-dual gravity, CINVESTAV-FIS-22/95, hep-th/9512013.
-
CINVESTAV-FIS-22/95
-
-
-
13
-
-
0002607704
-
Generalized conformal structures
-
Twistors in mathematics and Physics, eds. T.N. Bailey and R.J. Baston, (Cambridge Univ. Press, Cambridge)
-
[G] S.G. Gindikin, Generalized conformal structures, in: Twistors in mathematics and Physics, eds. T.N. Bailey and R.J. Baston, LMS Lecture Note Series, Vol. 156 (Cambridge Univ. Press, Cambridge).
-
LMS Lecture Note Series
, vol.156
-
-
Gindikin, S.G.1
-
16
-
-
0010804180
-
Phase space discretization and Moyal quantization
-
hep-th/9510077
-
[KeS] R. Kemmoku, and S. Saito, Phase space discretization and Moyal quantization, TMUP-HEL-9507, hep-th/9510077.
-
TMUP-HEL-9507
-
-
Kemmoku, R.1
Saito, S.2
-
17
-
-
0002506343
-
Discrete lax equations and differential-difference calculus
-
[K85] B.A. Kupershmidt, Discrete lax equations and differential-difference calculus, Asterisque 123 (1985) 1-212.
-
(1985)
Asterisque
, vol.123
, pp. 1-212
-
-
Kupershmidt, B.A.1
-
18
-
-
0002428944
-
Quantizations and integrable systems
-
[K] B.A. Kupershmidt Quantizations and integrable systems, Lett. Math. Phys. 20 (1990) 19-31.
-
(1990)
Lett. Math. Phys.
, vol.20
, pp. 19-31
-
-
Kupershmidt, B.A.1
-
20
-
-
0010798066
-
Generalized twistor correspondences, D-Bar problems and the KP equations
-
Twistor Theory, ed. S. Huggett, (Dekker, New York)
-
[M] L.J. Mason, Generalized twistor correspondences, D-Bar problems and the KP equations, in: Twistor Theory, ed. S. Huggett, Lecture Notes in Pure and Applied Mathematics, Vol. 169 (Dekker, New York).
-
Lecture Notes in Pure and Applied Mathematics
, vol.169
-
-
Mason, L.J.1
-
21
-
-
0001354175
-
A connection between the Einstein and Yang-Mills equations
-
[MN] L.J. Mason and E.T. Newman, A connection between the Einstein and Yang-Mills equations, Comm. Math. Phys. 121 (1989) 659-668.
-
(1989)
Comm. Math. Phys.
, vol.121
, pp. 659-668
-
-
Mason, L.J.1
Newman, E.T.2
-
22
-
-
33744756478
-
Nonlinear Schrödinger and Korteweg deVries are reductions of self-dual Yang-Mills
-
[MS] L.J. Mason and G.A.J. Sparling, Nonlinear Schrödinger and Korteweg deVries are reductions of self-dual Yang-Mills, Phys. Lett. A 137 (1989) 29-33; Twistor correspondences for the soliton hierarchies, J. Geom. Phys. 8 (1992) 243-271.
-
(1989)
Phys. Lett. A
, vol.137
, pp. 29-33
-
-
Mason, L.J.1
Sparling, G.A.J.2
-
23
-
-
0000485243
-
Twistor correspondences for the soliton hierarchies
-
[MS] L.J. Mason and G.A.J. Sparling, Nonlinear Schrödinger and Korteweg deVries are reductions of self-dual Yang-Mills, Phys. Lett. A 137 (1989) 29-33; Twistor correspondences for the soliton hierarchies, J. Geom. Phys. 8 (1992) 243-271.
-
(1992)
J. Geom. Phys.
, vol.8
, pp. 243-271
-
-
-
24
-
-
84952911698
-
Quantum mechanics as a statistical theory
-
[Mo] J. Moyal, Quantum mechanics as a statistical theory, Proc. Camb. Phil. Soc. 45 (1949) 99-124.
-
(1949)
Proc. Camb. Phil. Soc.
, vol.45
, pp. 99-124
-
-
Moyal, J.1
-
26
-
-
0001251873
-
Self-dual gravity as a large-N limit of the 2D non-linear sigma model
-
[Pa] Q.-H. Park, self-dual gravity as a large-N limit of the 2D non-linear sigma model, Phys, Lett B 238 (1990) 287-290; 2-D sigma model approach to 4-D instantons, Internat. J. Modern Phys. A 7 (1992) 1415-1448.
-
(1990)
Phys, Lett B
, vol.238
, pp. 287-290
-
-
Park, Q.-H.1
-
27
-
-
0001251873
-
2-D sigma model approach to 4-D instantons
-
[Pa] Q.-H. Park, self-dual gravity as a large-N limit of the 2D non-linear sigma model, Phys, Lett B 238 (1990) 287-290; 2-D sigma model approach to 4-D instantons, Internat. J. Modern Phys. A 7 (1992) 1415-1448.
-
(1992)
Internat. J. Modern Phys. A
, vol.7
, pp. 1415-1448
-
-
-
28
-
-
0001342082
-
Nonlinear gravitons and curved twistor theory
-
[Pen] R. Penrose, Nonlinear gravitons and curved twistor theory, Gen. Relativity Gravitation 7 (1976) 31-52; The nonlinear graviton, Gen. Relativity Gravitation 7 (1976) 171-176.
-
(1976)
Gen. Relativity Gravitation
, vol.7
, pp. 31-52
-
-
Penrose, R.1
-
29
-
-
0010877547
-
The nonlinear graviton
-
[Pen] R. Penrose, Nonlinear gravitons and curved twistor theory, Gen. Relativity Gravitation 7 (1976) 31-52; The nonlinear graviton, Gen. Relativity Gravitation 7 (1976) 171-176.
-
(1976)
Gen. Relativity Gravitation
, vol.7
, pp. 171-176
-
-
-
30
-
-
36749110862
-
Some solutions of complex Einstein equations
-
[P1] J.F. Plebanski, Some solutions of complex Einstein equations, J. Math. Phys. 16 (1975) 2395-2402.
-
(1975)
J. Math. Phys.
, vol.16
, pp. 2395-2402
-
-
Plebanski, J.F.1
-
31
-
-
0042629720
-
The Lagrangian of a self-dual gravitional field as a limit of the SDYM Lagrangian
-
[PP] J.F. Plebanski and M. Przanowski, The Lagrangian of a self-dual gravitional field as a limit of the SDYM Lagrangian, Phys. Lett. A 212 (1996) 22-28.
-
(1996)
Phys. Lett. A
, vol.212
, pp. 22-28
-
-
Plebanski, J.F.1
Przanowski, M.2
-
32
-
-
0010877548
-
The Moyal deformation of the second heavenly equation
-
[PPRT] J.F. Plebanski, M. Przanowski, B. Rajca and K. Tosiek, The Moyal deformation of the second heavenly equation, Acta Phys. Polon. B 26 (1995) 889-902.
-
(1995)
Acta Phys. Polon. B
, vol.26
, pp. 889-902
-
-
Plebanski, J.F.1
Przanowski, M.2
Rajca, B.3
Tosiek, K.4
-
34
-
-
0002041569
-
The Moyal algebra and integrable deformations of the self-dual Einstein equations
-
[S92] I.A.B. Strachan, The Moyal algebra and integrable deformations of the self-dual Einstein equations, Phys. Lett. B 283 (1992) 63-66.
-
(1992)
Phys. Lett. B
, vol.283
, pp. 63-66
-
-
Strachan, I.A.B.1
-
35
-
-
21144471605
-
Hierarchy of conservation laws for self-dual gravity
-
[S93] I.A.B. Strachan, Hierarchy of conservation laws for self-dual gravity, Classical Quantum Gravity 10 (1993) 1417-1423.
-
(1993)
Classical Quantum Gravity
, vol.10
, pp. 1417-1423
-
-
Strachan, I.A.B.1
-
36
-
-
36149032481
-
The Moyal bracket and the dispersionless limit of the KP hierarchy
-
[S95a] I.A.B. Strachan, The Moyal bracket and the dispersionless limit of the KP hierarchy, J. Phys. A 20 (1995) 1967-1975.
-
(1995)
J. Phys. A
, vol.20
, pp. 1967-1975
-
-
Strachan, I.A.B.1
-
37
-
-
21844513089
-
The symmetry structure of the anti-self dual Einstein hierarchy
-
[S95b] I.A.B. Strachan, The symmetry structure of the anti-self dual Einstein hierarchy, J. Math. Phys. 36 (1995) 3566-3573.
-
(1995)
J. Math. Phys.
, vol.36
, pp. 3566-3573
-
-
Strachan, I.A.B.1
-
39
-
-
0001237954
-
Dressing operator approach to Moyal algebraic deformations of self-dual gravity
-
[T94a] K. Takasaki, Dressing operator approach to Moyal algebraic deformations of self-dual gravity, J. Geom. Phys. 14 (1994) 111-120; Non-Abelian KP hierarchy with Moyal algebraic coefficients, J. Geom. Phys. 14 (1994) 332-364.
-
(1994)
J. Geom. Phys.
, vol.14
, pp. 111-120
-
-
Takasaki, K.1
-
40
-
-
30244556278
-
Non-Abelian KP hierarchy with Moyal algebraic coefficients
-
[T94a] K. Takasaki, Dressing operator approach to Moyal algebraic deformations of self-dual gravity, J. Geom. Phys. 14 (1994) 111-120; Non-Abelian KP hierarchy with Moyal algebraic coefficients, J. Geom. Phys. 14 (1994) 332-364.
-
(1994)
J. Geom. Phys.
, vol.14
, pp. 332-364
-
-
-
41
-
-
21844525065
-
Symmetries and tau function of higher dimensional dispersionless integrable hierarchies
-
[T94b] K. Takasaki, Symmetries and tau function of higher dimensional dispersionless integrable hierarchies, J. Math. Phys. 36 (1995) 3574-3607.
-
(1995)
J. Math. Phys.
, vol.36
, pp. 3574-3607
-
-
Takasaki, K.1
-
44
-
-
0040208713
-
Algebraic aspects of the higher-spin problem
-
[V] M.A. Vasiliev, Algebraic aspects of the higher-spin problem, Phys. Lett. B 257 (1991) 111-118; More on equations of motion for interacting massless fields of all spins in 3+1 dimensions, Phys. Lett. B 285 (1992) 225-234.
-
(1991)
Phys. Lett. B
, vol.257
, pp. 111-118
-
-
Vasiliev, M.A.1
-
45
-
-
0007156770
-
More on equations of motion for interacting massless fields of all spins in 3+1 dimensions
-
[V] M.A. Vasiliev, Algebraic aspects of the higher-spin problem, Phys. Lett. B 257 (1991) 111-118; More on equations of motion for interacting massless fields of all spins in 3+1 dimensions, Phys. Lett. B 285 (1992) 225-234.
-
(1992)
Phys. Lett. B
, vol.285
, pp. 225-234
-
-
-
46
-
-
0002256470
-
On self-dual gauge fields
-
[W77] R.S. Ward, On self-dual gauge fields, Phys. Lett. A 61 (1977) 81-82.
-
(1977)
Phys. Lett. A
, vol.61
, pp. 81-82
-
-
Ward, R.S.1
-
47
-
-
0001437082
-
Integrable and solvable systems and relations among them
-
[W] R.S. Ward, Integrable and solvable systems and relations among them, Phil. Trans. Roy. Soc. A 315 (1985) 451-457; Multidimensional integrable systems, in: Field Theory, Quantum Gravity and Strings, eds. H.J. de Vega and N. Sanchez, Lecture Notes in Physics, Vol. 246 (Springer, Berlin, 1986); Integrable systems in twistor theory, in: Twistors in mathematics and physics, eds. T.N. Bailey and R.J. Baston, LMS Lecture Note Series, Vol. 156 (Cambridge Univ. Press, Cambridge); Infinite-dimensional gauge groups and special nonlinear gravitons, J. Geom. Phys. 8 (1992) 317-325.
-
(1985)
Phil. Trans. Roy. Soc. A
, vol.315
, pp. 451-457
-
-
Ward, R.S.1
-
48
-
-
0007470205
-
Multidimensional integrable systems
-
Field Theory, Quantum Gravity and Strings, eds. H.J. de Vega and N. Sanchez, (Springer, Berlin)
-
[W] R.S. Ward, Integrable and solvable systems and relations among them, Phil. Trans. Roy. Soc. A 315 (1985) 451-457; Multidimensional integrable systems, in: Field Theory, Quantum Gravity and Strings, eds. H.J. de Vega and N. Sanchez, Lecture Notes in Physics, Vol. 246 (Springer, Berlin, 1986); Integrable systems in twistor theory, in: Twistors in mathematics and physics, eds. T.N. Bailey and R.J. Baston, LMS Lecture Note Series, Vol. 156 (Cambridge Univ. Press, Cambridge); Infinite-dimensional gauge groups and special nonlinear gravitons, J. Geom. Phys. 8 (1992) 317-325.
-
(1986)
Lecture Notes in Physics
, vol.246
-
-
-
49
-
-
0010877551
-
Integrable systems in twistor theory
-
Twistors in mathematics and physics, eds. T.N. Bailey and R.J. Baston, (Cambridge Univ. Press, Cambridge)
-
[W] R.S. Ward, Integrable and solvable systems and relations among them, Phil. Trans. Roy. Soc. A 315 (1985) 451-457; Multidimensional integrable systems, in: Field Theory, Quantum Gravity and Strings, eds. H.J. de Vega and N. Sanchez, Lecture Notes in Physics, Vol. 246 (Springer, Berlin, 1986); Integrable systems in twistor theory, in: Twistors in mathematics and physics, eds. T.N. Bailey and R.J. Baston, LMS Lecture Note Series, Vol. 156 (Cambridge Univ. Press, Cambridge); Infinite-dimensional gauge groups and special nonlinear gravitons, J. Geom. Phys. 8 (1992) 317-325.
-
LMS Lecture Note Series
, vol.156
-
-
-
50
-
-
30244491222
-
Infinite-dimensional gauge groups and special nonlinear gravitons
-
[W] R.S. Ward, Integrable and solvable systems and relations among them, Phil. Trans. Roy. Soc. A 315 (1985) 451-457; Multidimensional integrable systems, in: Field Theory, Quantum Gravity and Strings, eds. H.J. de Vega and N. Sanchez, Lecture Notes in Physics, Vol. 246 (Springer, Berlin, 1986); Integrable systems in twistor theory, in: Twistors in mathematics and physics, eds. T.N. Bailey and R.J. Baston, LMS Lecture Note Series, Vol. 156 (Cambridge Univ. Press, Cambridge); Infinite-dimensional gauge groups and special nonlinear gravitons, J. Geom. Phys. 8 (1992) 317-325.
-
(1992)
J. Geom. Phys.
, vol.8
, pp. 317-325
-
-
|