-
1
-
-
0002876262
-
Theory of alternative, quadratic programs and complementarity problems
-
(R. W. Cottle, F. Giannessi, and J. L. Lions, Eds.), Wiley, New York
-
1. F. Giannessi, Theory of alternative, quadratic programs and complementarity problems, in "Variational Inequalities and Complementarity Problems" (R. W. Cottle, F. Giannessi, and J. L. Lions, Eds.), pp. 151-186, Wiley, New York, 1980.
-
(1980)
Variational Inequalities and Complementarity Problems
, pp. 151-186
-
-
Giannessi, F.1
-
2
-
-
44949289033
-
Vector complementarity problem and its equivalences with weak minimal element in ordered spaces
-
2. G. Y. Chen and X. Q. Yang, Vector complementarity problem and its equivalences with weak minimal element in ordered spaces, J. Math. Anal. Appl. 153 (1990), 136-158.
-
(1990)
J. Math. Anal. Appl.
, vol.153
, pp. 136-158
-
-
Chen, G.Y.1
Yang, X.Q.2
-
3
-
-
0000546428
-
Vector variational inequality and vector optimization
-
Springer-Verlag, Heidelberg
-
3. G. Y. Chen and G. M. Cheng, Vector variational inequality and vector optimization, in "Lecture Notes in Economics and Mathematical Systems," Vol. 258, pp. 408-416, Springer-Verlag, Heidelberg, 1987.
-
(1987)
Lecture Notes in Economics and Mathematical Systems
, vol.258
, pp. 408-416
-
-
Chen, G.Y.1
Cheng, G.M.2
-
4
-
-
0002719860
-
A vector variational inequality and optimization over an efficient set
-
4. G. Y. Chen and B. D. Craven, A vector variational inequality and optimization over an efficient set, Z. Oper. Res. 3 (1990), 1-12.
-
(1990)
Z. Oper. Res.
, vol.3
, pp. 1-12
-
-
Chen, G.Y.1
Craven, B.D.2
-
5
-
-
0001221101
-
Existence of solution for a vector variational inequality: An extension of the Hartmann-Stampacchia theorem
-
5. G. Y. Chen, Existence of solution for a vector variational inequality: An extension of the Hartmann-Stampacchia theorem, J. Optim. Theory Appl. 74 (1992), 445-456.
-
(1992)
J. Optim. Theory Appl.
, vol.74
, pp. 445-456
-
-
Chen, G.Y.1
-
6
-
-
43949163512
-
Vector variational inequality and its duality
-
6. X. Q. Yang, Vector variational inequality and its duality, Nonlinear Anal. 21 (1993), 869-877.
-
(1993)
Nonlinear Anal.
, vol.21
, pp. 869-877
-
-
Yang, X.Q.1
-
7
-
-
0040834710
-
On vector variational inequalities
-
7. S. J. Yu and J. C. Yao, On vector variational inequalities, J. Optim. Theory Appl. 89 (1996), 749-769.
-
(1996)
J. Optim. Theory Appl.
, vol.89
, pp. 749-769
-
-
Yu, S.J.1
Yao, J.C.2
-
9
-
-
0020208193
-
Generalized variational inequalities
-
9. S. C. Fang and E. L. Petersen, Generalized variational inequalities, J. Optim. Theory Appl. 38 (1982), 363-383.
-
(1982)
J. Optim. Theory Appl.
, vol.38
, pp. 363-383
-
-
Fang, S.C.1
Petersen, E.L.2
-
10
-
-
33646842320
-
A generalization of Tychonoff's fixed-point theorem
-
10. K. Fan, A generalization of Tychonoff's fixed-point theorem, Math. Ann. 142 (1961), 305-310.
-
(1961)
Math. Ann.
, vol.142
, pp. 305-310
-
-
Fan, K.1
-
11
-
-
0000574179
-
Ein Beweis des Fixpunktsatzes für N Dimensionale Simplexe
-
11. B. Knaster, C. Kuratowski, and S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes für N Dimensionale Simplexe, Fund. Math. 14 (1929), 132-137.
-
(1929)
Fund. Math.
, vol.14
, pp. 132-137
-
-
Knaster, B.1
Kuratowski, C.2
Mazurkiewicz, S.3
-
12
-
-
0016941970
-
Complementarity over cones with monotone and pseudomonotone maps
-
12. S. Karamadian, Complementarity over cones with monotone and pseudomonotone maps, J. Optim. Theory Appl. 18 (1976), 445-454.
-
(1976)
J. Optim. Theory Appl.
, vol.18
, pp. 445-454
-
-
Karamadian, S.1
-
13
-
-
84972488065
-
Monotone (nonlinear) operators in Hilbert space
-
13. G. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962), 341-346.
-
(1962)
Duke Math. J.
, vol.29
, pp. 341-346
-
-
Minty, G.1
-
15
-
-
0028545469
-
Multi-valued variational inequalities with K-pseudomonotone operators
-
15. J. C. Yao, Multi-valued variational inequalities with K-pseudomonotone operators, J. Optim. Theory Appl. 83 (1994), 391-403.
-
(1994)
J. Optim. Theory Appl.
, vol.83
, pp. 391-403
-
-
Yao, J.C.1
-
17
-
-
0001239788
-
Sur le Théorème Fondamentale de al Théorie des Jeux
-
17. H. Kneser, Sur le Théorème Fondamentale de al Théorie des Jeux, C. R. Acad. Sci. Paris 234 (1952), 2418-2420.
-
(1952)
C. R. Acad. Sci. Paris
, vol.234
, pp. 2418-2420
-
-
Kneser, H.1
-
18
-
-
0002855830
-
Combined relaxation methods for finding equilibrium points and solving related problems
-
18. I. V. Konnov, Combined relaxation methods for finding equilibrium points and solving related problems, Izv. Vyssh. Uchebn. Zaved. Mat. 37 (1993), 44-51.
-
(1993)
Izv. Vyssh. Uchebn. Zaved. Mat.
, vol.37
, pp. 44-51
-
-
Konnov, I.V.1
-
19
-
-
63349087394
-
On combined relaxation methods' convergence rates
-
19. I. V. Konnov, On combined relaxation methods' convergence rates, Izv. Vyssh. Uchebn. Zaved. Mat. 37 (1993), 89-92.
-
(1993)
Izv. Vyssh. Uchebn. Zaved. Mat.
, vol.37
, pp. 89-92
-
-
Konnov, I.V.1
|