-
1
-
-
0027157735
-
-
G. Blume et al., Biochim. Biophys. Acta 1149, 180 (1993); T. M. Allen, E. Brandeis, C. B. Hansen, G. Y. Kao, S. Zalipsky, ibid. 1237, 99 (1995); S. A. DeFrees, L. Phillips, L. Guo, S. Zalipsky, J. Am. Chem. Soc. 118, 6101 (1996); S. Zalipsky, B. Puntambekar, P. Boulikas, C. M. Engbers, M. C. Woodle, Bioconjugate Chem. 6, 705 (1995); R. J. Lee and P. S. Low, J. Biol. Chem. 269, 3198 (1994).
-
(1993)
Biochim. Biophys. Acta
, vol.1149
, pp. 180
-
-
Blume, G.1
-
2
-
-
0029120094
-
-
G. Blume et al., Biochim. Biophys. Acta 1149, 180 (1993); T. M. Allen, E. Brandeis, C. B. Hansen, G. Y. Kao, S. Zalipsky, ibid. 1237, 99 (1995); S. A. DeFrees, L. Phillips, L. Guo, S. Zalipsky, J. Am. Chem. Soc. 118, 6101 (1996); S. Zalipsky, B. Puntambekar, P. Boulikas, C. M. Engbers, M. C. Woodle, Bioconjugate Chem. 6, 705 (1995); R. J. Lee and P. S. Low, J. Biol. Chem. 269, 3198 (1994).
-
(1995)
Biochim. Biophys. Acta
, vol.1237
, pp. 99
-
-
Allen, T.M.1
Brandeis, E.2
Hansen, C.B.3
Kao, G.Y.4
Zalipsky, S.5
-
3
-
-
0030018946
-
-
G. Blume et al., Biochim. Biophys. Acta 1149, 180 (1993); T. M. Allen, E. Brandeis, C. B. Hansen, G. Y. Kao, S. Zalipsky, ibid. 1237, 99 (1995); S. A. DeFrees, L. Phillips, L. Guo, S. Zalipsky, J. Am. Chem. Soc. 118, 6101 (1996); S. Zalipsky, B. Puntambekar, P. Boulikas, C. M. Engbers, M. C. Woodle, Bioconjugate Chem. 6, 705 (1995); R. J. Lee and P. S. Low, J. Biol. Chem. 269, 3198 (1994).
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 6101
-
-
Defrees, S.A.1
Phillips, L.2
Guo, L.3
Zalipsky, S.4
-
4
-
-
0029400887
-
-
G. Blume et al., Biochim. Biophys. Acta 1149, 180 (1993); T. M. Allen, E. Brandeis, C. B. Hansen, G. Y. Kao, S. Zalipsky, ibid. 1237, 99 (1995); S. A. DeFrees, L. Phillips, L. Guo, S. Zalipsky, J. Am. Chem. Soc. 118, 6101 (1996); S. Zalipsky, B. Puntambekar, P. Boulikas, C. M. Engbers, M. C. Woodle, Bioconjugate Chem. 6, 705 (1995); R. J. Lee and P. S. Low, J. Biol. Chem. 269, 3198 (1994).
-
(1995)
Bioconjugate Chem.
, vol.6
, pp. 705
-
-
Zalipsky, S.1
Puntambekar, B.2
Boulikas, P.3
Engbers, C.M.4
Woodle, M.C.5
-
5
-
-
0028001056
-
-
G. Blume et al., Biochim. Biophys. Acta 1149, 180 (1993); T. M. Allen, E. Brandeis, C. B. Hansen, G. Y. Kao, S. Zalipsky, ibid. 1237, 99 (1995); S. A. DeFrees, L. Phillips, L. Guo, S. Zalipsky, J. Am. Chem. Soc. 118, 6101 (1996); S. Zalipsky, B. Puntambekar, P. Boulikas, C. M. Engbers, M. C. Woodle, Bioconjugate Chem. 6, 705 (1995); R. J. Lee and P. S. Low, J. Biol. Chem. 269, 3198 (1994).
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 3198
-
-
Lee, R.J.1
Low, P.S.2
-
7
-
-
0028205738
-
-
T. L. Kuhl, D. E. Leckband, D. D. Lasic, J. N. Israelachvili, Biophys. J. 66, 1479 (1994).
-
(1994)
Biophys. J.
, vol.66
, pp. 1479
-
-
Kuhl, T.L.1
Leckband, D.E.2
Lasic, D.D.3
Israelachvili, J.N.4
-
8
-
-
0028315890
-
-
D. E. Leckband, F.-J. Schmitt, J. N. Israelachvili, W. Knoll, Biochemistry 33, 4611 (1994).
-
(1994)
Biochemistry
, vol.33
, pp. 4611
-
-
Leckband, D.E.1
Schmitt, F.-J.2
Israelachvili, J.N.3
Knoll, W.4
-
9
-
-
0028043631
-
-
2 and biotin-PEG-DSPE, respectively], the reaction mixture was filtered and loaded onto the silica gel column
-
2OP, 1H).
-
(1994)
FEBS Lett.
, vol.353
, pp. 71
-
-
Zalipsky, S.1
-
11
-
-
85069030287
-
-
note
-
The surfaces jump in or out whenever the gradient of the force exceeds the mechanical restoring force (here, the spring constant of the apparatus).
-
-
-
-
12
-
-
85069013991
-
-
note
-
The true potential is actually closer to a Langevin function and at 10% below full extension is likely to be larger than the parabolic potential. Although the freely hinged potential is more accurate, the quadratic form (Kramer's type approximation) is a good approximation for the following reasons: (i) the chains are barely overlapping, hence "brush effects" should be small; and (ii) the strongly stretched configurations make the chain interact even less with its neighbors.
-
-
-
-
13
-
-
85069019800
-
-
note
-
0.6a ≈ 43 Å for PEG-2000, where N is the number of monomer units and a is the length of a monomer unit.
-
-
-
-
14
-
-
0018101150
-
-
G. I. Bell, Science 200, 618 (1978).
-
(1978)
Science
, vol.200
, pp. 618
-
-
Bell, G.I.1
-
15
-
-
0025288944
-
-
The force required to break a biotin-streptavidin bond is >130 pN [N. Green, Methods Enzymol. 184, 51 (1990); V. T. Moy, E.-L. Florin, H. E. Gaub, Science 266, 257 (1994)]. The force needed to pull out a PEG-lipid from a bilayer into water is ∼16kT or 23 pN {[G. Cevc and D. Marsh, Phospholipid Bilayers (Wiley, New York, 1987)]; critical micellar concentration of MPEG1900-DSPE ≈ 5.8 μM [P. S. Uster et al., FEBS Lett. 386, 243 (1996)]}.
-
(1990)
Methods Enzymol.
, vol.184
, pp. 51
-
-
Green, N.1
-
16
-
-
0028140707
-
-
The force required to break a biotin-streptavidin bond is >130 pN [N. Green, Methods Enzymol. 184, 51 (1990); V. T. Moy, E.-L. Florin, H. E. Gaub, Science 266, 257 (1994)]. The force needed to pull out a PEG-lipid from a bilayer into water is ∼16kT or 23 pN {[G. Cevc and D. Marsh, Phospholipid Bilayers (Wiley, New York, 1987)]; critical micellar concentration of MPEG1900-DSPE ≈ 5.8 μM [P. S. Uster et al., FEBS Lett. 386, 243 (1996)]}.
-
(1994)
Science
, vol.266
, pp. 257
-
-
Moy, V.T.1
Florin, E.-L.2
Gaub, H.E.3
-
17
-
-
0025288944
-
-
Wiley, New York
-
The force required to break a biotin-streptavidin bond is >130 pN [N. Green, Methods Enzymol. 184, 51 (1990); V. T. Moy, E.-L. Florin, H. E. Gaub, Science 266, 257 (1994)]. The force needed to pull out a PEG-lipid from a bilayer into water is ∼16kT or 23 pN {[G. Cevc and D. Marsh, Phospholipid Bilayers (Wiley, New York, 1987)]; critical micellar concentration of MPEG1900-DSPE ≈ 5.8 μM [P. S. Uster et al., FEBS Lett. 386, 243 (1996)]}.
-
(1987)
Phospholipid Bilayers
-
-
Cevc, G.1
Marsh, D.2
-
18
-
-
0029896657
-
-
The force required to break a biotin-streptavidin bond is >130 pN [N. Green, Methods Enzymol. 184, 51 (1990); V. T. Moy, E.-L. Florin, H. E. Gaub, Science 266, 257 (1994)]. The force needed to pull out a PEG-lipid from a bilayer into water is ∼16kT or 23 pN {[G. Cevc and D. Marsh, Phospholipid Bilayers (Wiley, New York, 1987)]; critical micellar concentration of MPEG1900-DSPE ≈ 5.8 μM [P. S. Uster et al., FEBS Lett. 386, 243 (1996)]}.
-
(1996)
FEBS Lett.
, vol.386
, pp. 243
-
-
Uster, P.S.1
-
21
-
-
85069019485
-
-
note
-
Over biological time scales, the interaction was intrinsically irreversible and therefore a nonequilibrium one, where the interaction energy or force on approach was quite different from that on separation (compare with Fig. 3). Nonequilibrium effects are usually not discussed when considering complementary interactions. However, it is the energy or force on approach that determines the "on-rates" of binding reactions, whereas that on separation determines the "off-rate."
-
-
-
-
22
-
-
85069014468
-
-
note
-
The particular dynamics or characteristic time of the tether coupled with the ligand receptor pair will ultimately determine the effective on- and off-rates.
-
-
-
-
23
-
-
85069012301
-
-
See G. Cevc and D. Marsh, in (11)
-
See G. Cevc and D. Marsh, in (11).
-
-
-
-
24
-
-
0026607039
-
-
D. E. Leckband, J. N. Israelachvili, F.-J. Schmitt, W. Knoll, Science 255, 1419 (1992).
-
(1992)
Science
, vol.255
, pp. 1419
-
-
Leckband, D.E.1
Israelachvili, J.N.2
Schmitt, F.-J.3
Knoll, W.4
-
25
-
-
85069023606
-
-
note
-
We thank P. Pincus, G. Fredrickson, and C. Marques for valuable discussions and D. McLaren for preparing the figures. J.Y.W. was supported by an NIH/ National Research Service Award individual postdoctoral fellowship (GM17876). T.L.K. and J.N.I. were supported by NIH grant GM 47334.
-
-
-
|