메뉴 건너뛰기




Volumn 275, Issue 5296, 1997, Pages 65-67

Disease extinction and community size: Modeling the persistence of measles

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; COMMUNITY; DISEASE TRANSMISSION; EPIDEMIC; HUMAN; INCIDENCE; MEASLES; POPULATION; PRIORITY JOURNAL; STOCHASTIC MODEL;

EID: 0031015249     PISSN: 00368075     EISSN: None     Source Type: Journal    
DOI: 10.1126/science.275.5296.65     Document Type: Article
Times cited : (346)

References (35)
  • 1
    • 0003188315 scopus 로고
    • M.S. Bartlett, J. R. Stat. Soc. Ser. A 120, 48 (1957); B. M. Bolkerand B. T. Grenfell, Proc. R. Soc. London Ser. B 251, 75 (1993).
    • (1957) J. R. Stat. Soc. Ser. A , vol.120 , pp. 48
    • Bartlett, M.S.1
  • 4
    • 0013923546 scopus 로고
    • F. L. Black, J. Theor. Biol. 11, 207 (1966); A. P. Cliff, P. Haggett, J. K. Ord, G. R. Versey, Spatial Diffusion: An Historical Geography of Epidemics in an Island Community (Cambridge Univ. Press, Cambridge, 1981).
    • (1966) J. Theor. Biol. , vol.11 , pp. 207
    • Black, F.L.1
  • 11
    • 0021690803 scopus 로고
    • P. E. M. Fine and J. A. Clarkson, Int. J. Epidemiol. 11, 5 (1982); J. L. Aron and I. B. Schwartz J. Theor. Biol. 110, 665 (1984).
    • (1984) J. Theor. Biol. , vol.110 , pp. 665
    • Aron, J.L.1    Schwartz, I.B.2
  • 17
    • 14444284214 scopus 로고    scopus 로고
    • note
    • 2 is decreased during school holidays. The WAIFW matrix (for both the RAS and PRAS models) is estimated by obtaining the best fit to the average biennial cycle from the England and Wales data. Full details are given in (12, 13).
  • 18
    • 77957182038 scopus 로고
    • R. M. Anderson and R. M. May, IMA J. Math. Appl. Med. Biol. 1,233 (1984); R. M. May and R. M. Anderson, Math. Biosci. 72, 83 (1984); B. M. Bolker and B. T. Grenfell, Philos. Trans. R. Soc. London Ser. B 348, 309 (1995).
    • (1984) IMA J. Math. Appl. Med. Biol. , vol.1 , pp. 233
    • Anderson, R.M.1    May, R.M.2
  • 19
    • 0021529194 scopus 로고
    • R. M. Anderson and R. M. May, IMA J. Math. Appl. Med. Biol. 1,233 (1984); R. M. May and R. M. Anderson, Math. Biosci. 72, 83 (1984); B. M. Bolker and B. T. Grenfell, Philos. Trans. R. Soc. London Ser. B 348, 309 (1995).
    • (1984) Math. Biosci. , vol.72 , pp. 83
    • May, R.M.1    Anderson, R.M.2
  • 20
    • 0029654470 scopus 로고
    • R. M. Anderson and R. M. May, IMA J. Math. Appl. Med. Biol. 1,233 (1984); R. M. May and R. M. Anderson, Math. Biosci. 72, 83 (1984); B. M. Bolker and B. T. Grenfell, Philos. Trans. R. Soc. London Ser. B 348, 309 (1995).
    • (1995) Philos. Trans. R. Soc. London Ser. B , vol.348 , pp. 309
    • Bolker, B.M.1    Grenfell, B.T.2
  • 24
    • 0028670078 scopus 로고    scopus 로고
    • preprint
    • R. Engbert and F. R. Drepper, Chaos Solitons Fractals 4, 1147 (1994); N. M. Ferguson, preprint (1996).
    • (1996)
    • Ferguson, N.M.1
  • 25
    • 14444270230 scopus 로고    scopus 로고
    • note
    • 1 be the probability distribution functions of times in the two classes, then (ignoring mortality in the exposed and infectious classes) the standard SEIR model can be replaced by two time-delayed differential equations equations presented where equation presented γ = βSI, m is the birth and death rate, and N is the population size. Although Eqs. 1 are useful from a mathematical perspective (23), for computational simplicity we further subdivide the E and I classes, so that individuals move into a new subclass after short time intervals. Deterministic simulations using these two methods give identical results.
  • 26
    • 50449154711 scopus 로고
    • R. E. Hope Simpson, Lancet ii, 549 (1952); N. J. T. Bailey, Biometrika 43, 15 (1956).
    • (1952) Lancet , vol.2 , pp. 549
    • Hope Simpson, R.E.1
  • 27
    • 50449154711 scopus 로고
    • R. E. Hope Simpson, Lancet ii, 549 (1952); N. J. T. Bailey, Biometrika 43, 15 (1956).
    • (1956) Biometrika , vol.43 , pp. 15
    • Bailey, N.J.T.1
  • 29
    • 0016061590 scopus 로고
    • N. J. T. Bailey, The Mathematical Theory of lnfectious Diseases (Griffin, London, 1975); F. C. Hoppensteadt, J. Franklin Inst. 297, 325 (1974); Z. Grossman, Theor. Popul. Biol. 18, 204 (1980).
    • (1974) J. Franklin Inst. , vol.297 , pp. 325
    • Hoppensteadt, F.C.1
  • 30
    • 0019075237 scopus 로고
    • N. J. T. Bailey, The Mathematical Theory of lnfectious Diseases (Griffin, London, 1975); F. C. Hoppensteadt, J. Franklin Inst. 297, 325 (1974); Z. Grossman, Theor. Popul. Biol. 18, 204 (1980).
    • (1980) Theor. Popul. Biol. , vol.18 , pp. 204
    • Grossman, Z.1
  • 32
    • 14444273098 scopus 로고    scopus 로고
    • note
    • 0. This in turn leads to greater stochasticity and more extinctions, which can be highlighted by examining ℙ(O), the probability that an infectious individual will not produce any secondary cases (Fig. 3B) equation presented
  • 34
    • 0021283858 scopus 로고
    • _, Nature 310, 224 (1984).
    • (1984) Nature , vol.310 , pp. 224
  • 35
    • 14444272857 scopus 로고    scopus 로고
    • note
    • We thank B. Bolker, S. Ellner, P. Harvey, and A. Kleczkowski for stimulating discussions. This research was supported by the Wellcome Trust and the Royal Society.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.