-
1
-
-
0027243577
-
-
(a) Roos, G.; Haines, R.; Raab, C. Synth. Comm. 1993, 23, 1251.
-
(1993)
Synth. Comm.
, vol.23
, pp. 1251
-
-
Roos, G.1
Haines, R.2
Raab, C.3
-
2
-
-
0026527455
-
-
(b) Johnson, C. R.; Adams, J. P.; Braun, M. P.; Senanayake, C. B. W. Tetrahedron Lett. 1992, 33, 919.
-
(1992)
Tetrahedron Lett.
, vol.33
, pp. 919
-
-
Johnson, C.R.1
Adams, J.P.2
Braun, M.P.3
Senanayake, C.B.W.4
-
3
-
-
0026768295
-
-
(c) Hwu, J. R., Hakimelahi, G. H., Chou, C.-T., Tetrahedron Lett. 1992, 33, 6469.
-
(1992)
Tetrahedron Lett.
, vol.33
, pp. 6469
-
-
Hwu, J.R.1
Hakimelahi, G.H.2
Chou, C.-T.3
-
5
-
-
0000296850
-
-
(a) For a review on kinetic acidities of ketones, see: d'Angelo, J. Tetrahedron, 1976, 32, 2979.
-
(1976)
Tetrahedron
, vol.32
, pp. 2979
-
-
D'Angelo, J.1
-
6
-
-
0000487061
-
-
Trost, B. M., Ed.; Pergamon Press: London
-
(b) For a recent review on the formation and aldol reactions of regio-defined enolates, see: Heathcock, C. H. in Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon Press: London, 1991, Vol 2, 181.
-
(1991)
Comprehensive Organic Synthesis
, vol.2
, pp. 181
-
-
Heathcock, C.H.1
-
7
-
-
1842275144
-
-
(c) Kinetically controlled deprotonation of α,β-unsaturated ketones occurs preferentially at the α′-carbon adjacent to the carbonyl group. However, the kinetically preferred site for both protonation and alkylation is the α-carbon, see: (i) Barluenga, J.; Aznar, F.; Cabal, M.; Valdés, C. Tetrahedron Lett. 1989, 30, 5923. (ii) Brown, C. A. J. Org. Chem. 1974, 39, 3913. (iii) Stork, G.; Kraus, G. A. J. Am. Chem. Soc. 1976, 98, 2351. (iv) Stork, G.; Kraus, G. A.; Garcia, G. A. J. Org. Chem. 1974, 39, 3459. (v) Stork, G.; Danheiser, R. L. J. Org. Chem. 1973, 38, 1775.
-
(1989)
Tetrahedron Lett.
, vol.30
, pp. 5923
-
-
Barluenga, J.1
Aznar, F.2
Cabal, M.3
Valdés, C.4
-
8
-
-
0001393754
-
-
(c) Kinetically controlled deprotonation of α,β-unsaturated ketones occurs preferentially at the α′-carbon adjacent to the carbonyl group. However, the kinetically preferred site for both protonation and alkylation is the α-carbon, see: (i) Barluenga, J.; Aznar, F.; Cabal, M.; Valdés, C. Tetrahedron Lett. 1989, 30, 5923. (ii) Brown, C. A. J. Org. Chem. 1974, 39, 3913. (iii) Stork, G.; Kraus, G. A. J. Am. Chem. Soc. 1976, 98, 2351. (iv) Stork, G.; Kraus, G. A.; Garcia, G. A. J. Org. Chem. 1974, 39, 3459. (v) Stork, G.; Danheiser, R. L. J. Org. Chem. 1973, 38, 1775.
-
(1974)
J. Org. Chem.
, vol.39
, pp. 3913
-
-
Brown, C.A.1
-
9
-
-
0011122352
-
-
(c) Kinetically controlled deprotonation of α,β-unsaturated ketones occurs preferentially at the α′-carbon adjacent to the carbonyl group. However, the kinetically preferred site for both protonation and alkylation is the α-carbon, see: (i) Barluenga, J.; Aznar, F.; Cabal, M.; Valdés, C. Tetrahedron Lett. 1989, 30, 5923. (ii) Brown, C. A. J. Org. Chem. 1974, 39, 3913. (iii) Stork, G.; Kraus, G. A. J. Am. Chem. Soc. 1976, 98, 2351. (iv) Stork, G.; Kraus, G. A.; Garcia, G. A. J. Org. Chem. 1974, 39, 3459. (v) Stork, G.; Danheiser, R. L. J. Org. Chem. 1973, 38, 1775.
-
(1976)
J. Am. Chem. Soc.
, vol.98
, pp. 2351
-
-
Stork, G.1
Kraus, G.A.2
-
10
-
-
0000257509
-
-
(c) Kinetically controlled deprotonation of α,β-unsaturated ketones occurs preferentially at the α′-carbon adjacent to the carbonyl group. However, the kinetically preferred site for both protonation and alkylation is the α-carbon, see: (i) Barluenga, J.; Aznar, F.; Cabal, M.; Valdés, C. Tetrahedron Lett. 1989, 30, 5923. (ii) Brown, C. A. J. Org. Chem. 1974, 39, 3913. (iii) Stork, G.; Kraus, G. A. J. Am. Chem. Soc. 1976, 98, 2351. (iv) Stork, G.; Kraus, G. A.; Garcia, G. A. J. Org. Chem. 1974, 39, 3459. (v) Stork, G.; Danheiser, R. L. J. Org. Chem. 1973, 38, 1775.
-
(1974)
J. Org. Chem.
, vol.39
, pp. 3459
-
-
Stork, G.1
Kraus, G.A.2
Garcia, G.A.3
-
11
-
-
33947084958
-
-
(c) Kinetically controlled deprotonation of α,β-unsaturated ketones occurs preferentially at the α′-carbon adjacent to the carbonyl group. However, the kinetically preferred site for both protonation and alkylation is the α-carbon, see: (i) Barluenga, J.; Aznar, F.; Cabal, M.; Valdés, C. Tetrahedron Lett. 1989, 30, 5923. (ii) Brown, C. A. J. Org. Chem. 1974, 39, 3913. (iii) Stork, G.; Kraus, G. A. J. Am. Chem. Soc. 1976, 98, 2351. (iv) Stork, G.; Kraus, G. A.; Garcia, G. A. J. Org. Chem. 1974, 39, 3459. (v) Stork, G.; Danheiser, R. L. J. Org. Chem. 1973, 38, 1775.
-
(1973)
J. Org. Chem.
, vol.38
, pp. 1775
-
-
Stork, G.1
Danheiser, R.L.2
-
12
-
-
0000294874
-
-
Lewis acid catalyzed alkylations of cross-conjugated silyl dienol ethers provided routes to α′-alkylated ketones. A short synthesis of the sesquiterpene (±)-arturmerone has been accomplished using the cross-conjugated TMS dienol ether of mesityl oxide, see: Paterson, I. Tetrahedron Lett. 1979, 1519.
-
(1979)
Tetrahedron Lett.
, pp. 1519
-
-
Paterson, I.1
-
14
-
-
0027194408
-
-
(b) Matsumoto, K.; Shimagaki, M.; Nakata, T.; Oishi, T. Tetrahedron Lett. 1993, 34, 4935.
-
(1993)
Tetrahedron Lett.
, vol.34
, pp. 4935
-
-
Matsumoto, K.1
Shimagaki, M.2
Nakata, T.3
Oishi, T.4
-
16
-
-
1842394591
-
-
Excess MVK enolate and/or lanthanides did not improve the yield
-
(a) Excess MVK enolate and/or lanthanides did not improve the yield,
-
-
-
-
17
-
-
0000637597
-
-
(b) Trapping of the lithium enolate of MVK by TMSCl at -78°C afforded only 65% yield, see: Jung, M. E.; McCombs, C. A. Tetrahedron Lett. 1976, 2935.
-
(1976)
Tetrahedron Lett.
, pp. 2935
-
-
Jung, M.E.1
McCombs, C.A.2
-
21
-
-
33845282130
-
-
(d) Guo, B.-S.; Doubleday, W.; Cohen, T. J. Am. Chem. Soc. 1987, 109, 4710.
-
(1987)
J. Am. Chem. Soc.
, vol.109
, pp. 4710
-
-
Guo, B.-S.1
Doubleday, W.2
Cohen, T.3
-
22
-
-
1842401717
-
-
note
-
13C NMR, IR, MS, and HRMS). Yields refer to spectroscopically and chromatographically purified (>95%) materials.
-
-
-
-
23
-
-
37049104623
-
-
This is true even in the case of aldehydes which give very low yields of 1,2-addition products in the presence of alkyl lithium or Grignard reagents, see: Imamoto, T.; Kusumoto, T.; Yokoyama, M. J.C.S. Chem. Comm. 1982, 1042.
-
(1982)
J.C.S. Chem. Comm.
, pp. 1042
-
-
Imamoto, T.1
Kusumoto, T.2
Yokoyama, M.3
-
24
-
-
33751157649
-
-
3 via the typical Kobayashi method and the reaction yielded only 25% of the desired aldol adduct. For the typical Kobayashi reaction, see: Kobayashi, S.; Hachiya, I. J. Org. Chem. 1994, 59, 3590.
-
(1994)
J. Org. Chem.
, vol.59
, pp. 3590
-
-
Kobayashi, S.1
Hachiya, I.2
|