-
1
-
-
0015967277
-
Computer methods for sampling from γ, β, poisson, and binomial distributions
-
Ahrens, J.H. and Dieter, U., 1974. Computer methods for sampling from γ, β, Poisson, and binomial distributions. Computing, 12: 223-246.
-
(1974)
Computing
, vol.12
, pp. 223-246
-
-
Ahrens, J.H.1
Dieter, U.2
-
2
-
-
0024931167
-
A new approach for finding the global minimum of error function of neural networks
-
Baba, N., 1989. A new approach for finding the global minimum of error function of neural networks. Neural Network, 2: 367-373.
-
(1989)
Neural Network
, vol.2
, pp. 367-373
-
-
Baba, N.1
-
3
-
-
0004095188
-
-
Software Technology Branch, Lyndon B. Johnson Space Center, Houston, Texas
-
Baffes, P.T., 1989. Nets User's Guide. Version 2.0. Software Technology Branch, Lyndon B. Johnson Space Center, Houston, Texas.
-
(1989)
Nets User's Guide. Version 2.0
-
-
Baffes, P.T.1
-
4
-
-
0026303673
-
Modeling forest dynamics: Moving from description to explanation
-
Bossel, H., 1991. Modeling forest dynamics: moving from description to explanation. Forest Ecology and Management, 42: 129-143.
-
(1991)
Forest Ecology and Management
, vol.42
, pp. 129-143
-
-
Bossel, H.1
-
5
-
-
0027069738
-
Real-structure process description as the basis of understanding ecosystems and their development
-
Bossel, H., 1992. Real-structure process description as the basis of understanding ecosystems and their development. Ecol. Model., 63: 261-276.
-
(1992)
Ecol. Model.
, vol.63
, pp. 261-276
-
-
Bossel, H.1
-
6
-
-
0024861871
-
Approximation by superposition of a sigmoidal function
-
Cybenko, G., 1989. Approximation by superposition of a sigmoidal function. Math. Controls, Signals Sys., 2: 303-314.
-
(1989)
Math. Controls, Signals Sys.
, vol.2
, pp. 303-314
-
-
Cybenko, G.1
-
7
-
-
0019371027
-
Uncertainty and arbitrariness in ecosystems modeling: A lake modelling example
-
Fedra, K., Van Straten, G. and Beck, M.B., 1981. Uncertainty and arbitrariness in ecosystems modeling: a lake modelling example. Ecol. Model., 13: 87-110.
-
(1981)
Ecol. Model.
, vol.13
, pp. 87-110
-
-
Fedra, K.1
Van Straten, G.2
Beck, M.B.3
-
8
-
-
0001551528
-
Approximating precision in simulation projections: An efficient alternative to Monte Carlo methods
-
Gertner, G., 1987. Approximating precision in simulation projections: an efficient alternative to Monte Carlo methods. For. Sci., 33: 230-239.
-
(1987)
For. Sci.
, vol.33
, pp. 230-239
-
-
Gertner, G.1
-
9
-
-
0030442379
-
Partitioning of the variance of predictions of a conceptual forest growth model
-
Finland, August, 1995. Swiss Fed. Inst. For., Snow, Landsc. Res. Birmensdorf Switzerland
-
Gertner, G., Guan, B. and Parysow, P., 1996. Partitioning of the Variance of Predictions of a Conceptual Forest Growth Model. In: Proc. Stat. Meth., Math. Comput. Sessions held at IUFRO World Congr., Finland, August, 1995. Swiss Fed. Inst. For., Snow, Landsc. Res. Birmensdorf Switzerland, pp. 11-22.
-
(1996)
Proc. Stat. Meth., Math. Comput. Sessions Held at IUFRO World Congr.
, pp. 11-22
-
-
Gertner, G.1
Guan, B.2
Parysow, P.3
-
10
-
-
0001942829
-
Neural networks and the bias/variance dilemma
-
Geman, S., Bienenstock, E. and Dourset, R., 1991. Neural networks and the bias/variance dilemma. Neural Comput., 4(1): 1-58.
-
(1991)
Neural Comput.
, vol.4
, Issue.1
, pp. 1-58
-
-
Geman, S.1
Bienenstock, E.2
Dourset, R.3
-
11
-
-
0030417945
-
An artificial neural network with partitionable outputs
-
Guan, B.T. and Gertner, G.Z., 1997. An artificial neural network with partitionable outputs. Comput. Electron. Agric., 16(1): 39-46.
-
(1997)
Comput. Electron. Agric.
, vol.16
, Issue.1
, pp. 39-46
-
-
Guan, B.T.1
Gertner, G.Z.2
-
12
-
-
0041867399
-
Modeling training site vegetation coverage probability with a random optimization procedure: An artificial neural network approach
-
Orlando, Florida
-
Guan, B.T., Gertner, G.Z. and Kowalski, D., 1993. Modeling training site vegetation coverage probability with a random optimization procedure: an artificial neural network approach. In: Proc. Conf. Appl. Artif. Neural Networks IV, Orlando, Florida, pp. 682-688.
-
(1993)
Proc. Conf. Appl. Artif. Neural Networks IV
, pp. 682-688
-
-
Guan, B.T.1
Gertner, G.Z.2
Kowalski, D.3
-
13
-
-
0024880831
-
Multilayer feedforward networks are universals approximators
-
Hornik, K., Stinchcombe, M. and White, H., 1989. Multilayer feedforward networks are universals approximators. Neural Network, 2: 359-366.
-
(1989)
Neural Network
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
15
-
-
0000165732
-
Use of TREGRO to simulate the effects of ozone on the growth of red spruce seedlings
-
Laurence, J.A., Kohut, R.J. and Amundson, R.G., 1993. Use of TREGRO to simulate the effects of ozone on the growth of red spruce seedlings. For. Sci., 39(3): 453-464.
-
(1993)
For. Sci.
, vol.39
, Issue.3
, pp. 453-464
-
-
Laurence, J.A.1
Kohut, R.J.2
Amundson, R.G.3
-
17
-
-
0343294901
-
-
Unpublished M.S. Thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois
-
Parysow, P.F., 1994. A procedure to approximate prediction uncertainty in ecological conceptual models. Unpublished M.S. Thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois, pp. 126.
-
(1994)
A Procedure to Approximate Prediction Uncertainty in Ecological Conceptual Models
, pp. 126
-
-
Parysow, P.F.1
-
18
-
-
0000696616
-
Neural networks and related methods for classification
-
Ripley, B.D., 1994. Neural networks and related methods for classification. J. R. Stat. Soc. Ser. B (Methodol.), 56 (3): 409-437.
-
(1994)
J. R. Stat. Soc. Ser. B (Methodol.)
, vol.56
, Issue.3
, pp. 409-437
-
-
Ripley, B.D.1
-
19
-
-
0002997755
-
Neural networks and statistical models
-
SAS Institute, Cary, North Carolina
-
Sarle, W.S., 1994. Neural networks and statistical models. In: Proc. Nineteenth Annu. SAS Users Group Int. Conf. SAS Institute, Cary, North Carolina, pp. 1538-1550.
-
(1994)
Proc. Nineteenth Annu. Sas Users Group Int. Conf.
, pp. 1538-1550
-
-
Sarle, W.S.1
-
20
-
-
0001053744
-
A quantitative analysis of plant form - The pipe model theory. I. Basic analysis
-
Shinozaki, K., Yoda, K., Hozumi, K. and Kira, T., 1964a. A quantitative analysis of plant form - the pipe model theory. I. Basic analysis. Jpn. J. For. Ecol., 14: 97-105.
-
(1964)
Jpn. J. For. Ecol.
, vol.14
, pp. 97-105
-
-
Shinozaki, K.1
Yoda, K.2
Hozumi, K.3
Kira, T.4
-
21
-
-
0001053742
-
A quantitative analysis of plant form - The pipe model theory. II. Further evidence of the theory and its application in forest ecology
-
Shinozaki, K., Yoda, K., Hozumi, K. and Kira, T., 1964b. A quantitative analysis of plant form - the pipe model theory. II. Further evidence of the theory and its application in forest ecology. Jpn. J. For. Ecol., 14: 133-139.
-
(1964)
Jpn. J. For. Ecol.
, vol.14
, pp. 133-139
-
-
Shinozaki, K.1
Yoda, K.2
Hozumi, K.3
Kira, T.4
-
22
-
-
45949121309
-
Fast simulated annealing
-
Szu, H. and Hartley, R., 1987. Fast simulated annealing. Phys. Lett. (Ser. A), 122: 157-162.
-
(1987)
Phys. Lett. (Ser. A)
, vol.122
, pp. 157-162
-
-
Szu, H.1
Hartley, R.2
-
23
-
-
0024218896
-
A carbon balance model of stand growth: A derivation employing pipe-model theory and the self-thinning rule
-
Valentine, H., 1988. A carbon balance model of stand growth: a derivation employing pipe-model theory and the self-thinning rule. Ann. Bot., 62: 389-396.
-
(1988)
Ann. Bot.
, vol.62
, pp. 389-396
-
-
Valentine, H.1
-
24
-
-
0000243355
-
Learning in artificial neural networks: A statistical perspective
-
White, H., 1989a. Learning in artificial neural networks: a statistical perspective. Neural Comput., 1: 425-464.
-
(1989)
Neural Comput.
, vol.1
, pp. 425-464
-
-
White, H.1
-
25
-
-
0012195187
-
Some asymptotic results of learning in single hidden-layer feedforward network models
-
White, H., 1989b. Some asymptotic results of learning in single hidden-layer feedforward network models. J. Am. Stat. Assoc., 84: 1003-1013.
-
(1989)
J. Am. Stat. Assoc.
, vol.84
, pp. 1003-1013
-
-
White, H.1
|