메뉴 건너뛰기




Volumn 98, Issue 1, 1997, Pages 47-58

A framework for uncertainty assessment of mechanistic forest growth models: A neural network example

Author keywords

Artificial neural network; Conceptual model; Ecological modeling; Pipe model

Indexed keywords


EID: 0030967361     PISSN: 03043800     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0304-3800(96)01936-9     Document Type: Article
Times cited : (21)

References (25)
  • 1
    • 0015967277 scopus 로고
    • Computer methods for sampling from γ, β, poisson, and binomial distributions
    • Ahrens, J.H. and Dieter, U., 1974. Computer methods for sampling from γ, β, Poisson, and binomial distributions. Computing, 12: 223-246.
    • (1974) Computing , vol.12 , pp. 223-246
    • Ahrens, J.H.1    Dieter, U.2
  • 2
    • 0024931167 scopus 로고
    • A new approach for finding the global minimum of error function of neural networks
    • Baba, N., 1989. A new approach for finding the global minimum of error function of neural networks. Neural Network, 2: 367-373.
    • (1989) Neural Network , vol.2 , pp. 367-373
    • Baba, N.1
  • 3
    • 0004095188 scopus 로고
    • Software Technology Branch, Lyndon B. Johnson Space Center, Houston, Texas
    • Baffes, P.T., 1989. Nets User's Guide. Version 2.0. Software Technology Branch, Lyndon B. Johnson Space Center, Houston, Texas.
    • (1989) Nets User's Guide. Version 2.0
    • Baffes, P.T.1
  • 4
    • 0026303673 scopus 로고
    • Modeling forest dynamics: Moving from description to explanation
    • Bossel, H., 1991. Modeling forest dynamics: moving from description to explanation. Forest Ecology and Management, 42: 129-143.
    • (1991) Forest Ecology and Management , vol.42 , pp. 129-143
    • Bossel, H.1
  • 5
    • 0027069738 scopus 로고
    • Real-structure process description as the basis of understanding ecosystems and their development
    • Bossel, H., 1992. Real-structure process description as the basis of understanding ecosystems and their development. Ecol. Model., 63: 261-276.
    • (1992) Ecol. Model. , vol.63 , pp. 261-276
    • Bossel, H.1
  • 6
    • 0024861871 scopus 로고
    • Approximation by superposition of a sigmoidal function
    • Cybenko, G., 1989. Approximation by superposition of a sigmoidal function. Math. Controls, Signals Sys., 2: 303-314.
    • (1989) Math. Controls, Signals Sys. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 7
    • 0019371027 scopus 로고
    • Uncertainty and arbitrariness in ecosystems modeling: A lake modelling example
    • Fedra, K., Van Straten, G. and Beck, M.B., 1981. Uncertainty and arbitrariness in ecosystems modeling: a lake modelling example. Ecol. Model., 13: 87-110.
    • (1981) Ecol. Model. , vol.13 , pp. 87-110
    • Fedra, K.1    Van Straten, G.2    Beck, M.B.3
  • 8
    • 0001551528 scopus 로고
    • Approximating precision in simulation projections: An efficient alternative to Monte Carlo methods
    • Gertner, G., 1987. Approximating precision in simulation projections: an efficient alternative to Monte Carlo methods. For. Sci., 33: 230-239.
    • (1987) For. Sci. , vol.33 , pp. 230-239
    • Gertner, G.1
  • 9
    • 0030442379 scopus 로고    scopus 로고
    • Partitioning of the variance of predictions of a conceptual forest growth model
    • Finland, August, 1995. Swiss Fed. Inst. For., Snow, Landsc. Res. Birmensdorf Switzerland
    • Gertner, G., Guan, B. and Parysow, P., 1996. Partitioning of the Variance of Predictions of a Conceptual Forest Growth Model. In: Proc. Stat. Meth., Math. Comput. Sessions held at IUFRO World Congr., Finland, August, 1995. Swiss Fed. Inst. For., Snow, Landsc. Res. Birmensdorf Switzerland, pp. 11-22.
    • (1996) Proc. Stat. Meth., Math. Comput. Sessions Held at IUFRO World Congr. , pp. 11-22
    • Gertner, G.1    Guan, B.2    Parysow, P.3
  • 10
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • Geman, S., Bienenstock, E. and Dourset, R., 1991. Neural networks and the bias/variance dilemma. Neural Comput., 4(1): 1-58.
    • (1991) Neural Comput. , vol.4 , Issue.1 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Dourset, R.3
  • 11
    • 0030417945 scopus 로고    scopus 로고
    • An artificial neural network with partitionable outputs
    • Guan, B.T. and Gertner, G.Z., 1997. An artificial neural network with partitionable outputs. Comput. Electron. Agric., 16(1): 39-46.
    • (1997) Comput. Electron. Agric. , vol.16 , Issue.1 , pp. 39-46
    • Guan, B.T.1    Gertner, G.Z.2
  • 12
    • 0041867399 scopus 로고
    • Modeling training site vegetation coverage probability with a random optimization procedure: An artificial neural network approach
    • Orlando, Florida
    • Guan, B.T., Gertner, G.Z. and Kowalski, D., 1993. Modeling training site vegetation coverage probability with a random optimization procedure: an artificial neural network approach. In: Proc. Conf. Appl. Artif. Neural Networks IV, Orlando, Florida, pp. 682-688.
    • (1993) Proc. Conf. Appl. Artif. Neural Networks IV , pp. 682-688
    • Guan, B.T.1    Gertner, G.Z.2    Kowalski, D.3
  • 13
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universals approximators
    • Hornik, K., Stinchcombe, M. and White, H., 1989. Multilayer feedforward networks are universals approximators. Neural Network, 2: 359-366.
    • (1989) Neural Network , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 15
    • 0000165732 scopus 로고
    • Use of TREGRO to simulate the effects of ozone on the growth of red spruce seedlings
    • Laurence, J.A., Kohut, R.J. and Amundson, R.G., 1993. Use of TREGRO to simulate the effects of ozone on the growth of red spruce seedlings. For. Sci., 39(3): 453-464.
    • (1993) For. Sci. , vol.39 , Issue.3 , pp. 453-464
    • Laurence, J.A.1    Kohut, R.J.2    Amundson, R.G.3
  • 18
    • 0000696616 scopus 로고
    • Neural networks and related methods for classification
    • Ripley, B.D., 1994. Neural networks and related methods for classification. J. R. Stat. Soc. Ser. B (Methodol.), 56 (3): 409-437.
    • (1994) J. R. Stat. Soc. Ser. B (Methodol.) , vol.56 , Issue.3 , pp. 409-437
    • Ripley, B.D.1
  • 19
    • 0002997755 scopus 로고
    • Neural networks and statistical models
    • SAS Institute, Cary, North Carolina
    • Sarle, W.S., 1994. Neural networks and statistical models. In: Proc. Nineteenth Annu. SAS Users Group Int. Conf. SAS Institute, Cary, North Carolina, pp. 1538-1550.
    • (1994) Proc. Nineteenth Annu. Sas Users Group Int. Conf. , pp. 1538-1550
    • Sarle, W.S.1
  • 20
    • 0001053744 scopus 로고
    • A quantitative analysis of plant form - The pipe model theory. I. Basic analysis
    • Shinozaki, K., Yoda, K., Hozumi, K. and Kira, T., 1964a. A quantitative analysis of plant form - the pipe model theory. I. Basic analysis. Jpn. J. For. Ecol., 14: 97-105.
    • (1964) Jpn. J. For. Ecol. , vol.14 , pp. 97-105
    • Shinozaki, K.1    Yoda, K.2    Hozumi, K.3    Kira, T.4
  • 21
    • 0001053742 scopus 로고
    • A quantitative analysis of plant form - The pipe model theory. II. Further evidence of the theory and its application in forest ecology
    • Shinozaki, K., Yoda, K., Hozumi, K. and Kira, T., 1964b. A quantitative analysis of plant form - the pipe model theory. II. Further evidence of the theory and its application in forest ecology. Jpn. J. For. Ecol., 14: 133-139.
    • (1964) Jpn. J. For. Ecol. , vol.14 , pp. 133-139
    • Shinozaki, K.1    Yoda, K.2    Hozumi, K.3    Kira, T.4
  • 22
    • 45949121309 scopus 로고
    • Fast simulated annealing
    • Szu, H. and Hartley, R., 1987. Fast simulated annealing. Phys. Lett. (Ser. A), 122: 157-162.
    • (1987) Phys. Lett. (Ser. A) , vol.122 , pp. 157-162
    • Szu, H.1    Hartley, R.2
  • 23
    • 0024218896 scopus 로고
    • A carbon balance model of stand growth: A derivation employing pipe-model theory and the self-thinning rule
    • Valentine, H., 1988. A carbon balance model of stand growth: a derivation employing pipe-model theory and the self-thinning rule. Ann. Bot., 62: 389-396.
    • (1988) Ann. Bot. , vol.62 , pp. 389-396
    • Valentine, H.1
  • 24
    • 0000243355 scopus 로고
    • Learning in artificial neural networks: A statistical perspective
    • White, H., 1989a. Learning in artificial neural networks: a statistical perspective. Neural Comput., 1: 425-464.
    • (1989) Neural Comput. , vol.1 , pp. 425-464
    • White, H.1
  • 25
    • 0012195187 scopus 로고
    • Some asymptotic results of learning in single hidden-layer feedforward network models
    • White, H., 1989b. Some asymptotic results of learning in single hidden-layer feedforward network models. J. Am. Stat. Assoc., 84: 1003-1013.
    • (1989) J. Am. Stat. Assoc. , vol.84 , pp. 1003-1013
    • White, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.