-
1
-
-
0013464219
-
-
Thermospheric temperatures were measured by the Voyager ultraviolet spectrometer (UVS) occultations for Jupiter [S. Atreya et al., Geophys. Res. Lett. 6, 795 (1979)], Saturn [Smith et al., J. Geophys. Res. 88, 8667 (1983)], Uranus [F. Herbert et al., J. Geophys. Res. 92, 15093 (1987)], and Neptune [A. L. Broadfoot et al., Science 246, 1459 (1989)]. The temperatures range from 420 to 1000 K, with no trend in size or distance from the sun.
-
(1979)
Geophys. Res. Lett.
, vol.6
, pp. 795
-
-
Atreya, S.1
-
2
-
-
0020846515
-
-
Thermospheric temperatures were measured by the Voyager ultraviolet spectrometer (UVS) occultations for Jupiter [S. Atreya et al., Geophys. Res. Lett. 6, 795 (1979)], Saturn [Smith et al., J. Geophys. Res. 88, 8667 (1983)], Uranus [F. Herbert et al., J. Geophys. Res. 92, 15093 (1987)], and Neptune [A. L. Broadfoot et al., Science 246, 1459 (1989)]. The temperatures range from 420 to 1000 K, with no trend in size or distance from the sun.
-
(1983)
J. Geophys. Res.
, vol.88
, pp. 8667
-
-
Smith1
-
3
-
-
0002259188
-
-
Thermospheric temperatures were measured by the Voyager ultraviolet spectrometer (UVS) occultations for Jupiter [S. Atreya et al., Geophys. Res. Lett. 6, 795 (1979)], Saturn [Smith et al., J. Geophys. Res. 88, 8667 (1983)], Uranus [F. Herbert et al., J. Geophys. Res. 92, 15093 (1987)], and Neptune [A. L. Broadfoot et al., Science 246, 1459 (1989)]. The temperatures range from 420 to 1000 K, with no trend in size or distance from the sun.
-
(1987)
J. Geophys. Res.
, vol.92
, pp. 15093
-
-
Herbert, F.1
-
4
-
-
0024907529
-
-
Thermospheric temperatures were measured by the Voyager ultraviolet spectrometer (UVS) occultations for Jupiter [S. Atreya et al., Geophys. Res. Lett. 6, 795 (1979)], Saturn [Smith et al., J. Geophys. Res. 88, 8667 (1983)], Uranus [F. Herbert et al., J. Geophys. Res. 92, 15093 (1987)], and Neptune [A. L. Broadfoot et al., Science 246, 1459 (1989)]. The temperatures range from 420 to 1000 K, with no trend in size or distance from the sun.
-
(1989)
Science
, vol.246
, pp. 1459
-
-
Broadfoot, A.L.1
-
5
-
-
0005728790
-
-
For heating by charged particle impacts, see D. M. Hunten and A. J. Dessler [Planet. Space Sci. 25, 817 (1977)]. For Joule heating, see J. T. Clarke et al. [J. Geophys. Res. 92, 15139 (1987)] and Nishida and Watanabe [ibid. 86, 9945 (1991)].
-
(1977)
Planet. Space Sci.
, vol.25
, pp. 817
-
-
Hunten, D.M.1
Dessler, A.J.2
-
6
-
-
0023668783
-
-
For heating by charged particle impacts, see D. M. Hunten and A. J. Dessler [Planet. Space Sci. 25, 817 (1977)]. For Joule heating, see J. T. Clarke et al. [J. Geophys. Res. 92, 15139 (1987)] and Nishida and Watanabe [ibid. 86, 9945 (1991)].
-
(1987)
J. Geophys. Res.
, vol.92
, pp. 15139
-
-
Clarke, J.T.1
-
7
-
-
0005728790
-
-
For heating by charged particle impacts, see D. M. Hunten and A. J. Dessler [Planet. Space Sci. 25, 817 (1977)]. For Joule heating, see J. T. Clarke et al. [J. Geophys. Res. 92, 15139 (1987)] and Nishida and Watanabe [ibid. 86, 9945 (1991)].
-
(1991)
J. Geophys. Res.
, vol.86
, pp. 9945
-
-
Nishida1
Watanabe2
-
8
-
-
0011007303
-
-
French and P. Gierasch, J. Atmos. Sci. 31, 1707 (1974), who interpreted as gravity waves thermal oscillations detected from a stellar occultation by Jupiter's atmosphere [J. Veverka et al., Astron. J. 79, 73 (1974)].
-
(1974)
J. Atmos. Sci.
, vol.31
, pp. 1707
-
-
French1
Gierasch, P.2
-
9
-
-
0347247495
-
-
French and P. Gierasch, J. Atmos. Sci. 31, 1707 (1974), who interpreted as gravity waves thermal oscillations detected from a stellar occultation by Jupiter's atmosphere [J. Veverka et al., Astron. J. 79, 73 (1974)].
-
(1974)
Astron. J.
, vol.79
, pp. 73
-
-
Veverka, J.1
-
11
-
-
4243108527
-
-
A. Seiff et al., Science 272, 844 (1996); A. Seiff et al., ibid., 276, 402 (1997).
-
(1996)
Science
, vol.272
, pp. 844
-
-
Seiff, A.1
-
12
-
-
4243108527
-
-
A. Seiff et al., Science 272, 844 (1996); A. Seiff et al., ibid., 276, 402 (1997).
-
(1997)
Science
, vol.276
, pp. 402
-
-
Seiff, A.1
-
13
-
-
1842279801
-
-
note
-
We parameterize the mean profile as a cubic spline, with spline points every two scale heights, where a scale height is the e-folding distance of the pressure. The spline points are widely spaced so that the derived mean profile does not simply reproduce the long-wavelength fluctuations above 600 km. We considered other methods of defining the mean thermospheric profile, including a first-or second-order polynomial, a profile with constant energy flux, and a running average. Of the methods considered, we prefer the cubic spline because it best matched the profile between 400 and 500 km, where the curvature is large. The location of the maxima and minima in the thermal profiles does not depend on the method used to define the mean profile. The amplitudes are more sensitive, especially below 500 km. For example, the amplitudes of the negative peak at 665 km range from 34 (for the running average) to 55 K (for the constant-flux case), and the amplitudes of the negative peak at 425 km range from 2 (for the running average) to 40 K (for the first-order polynomial).
-
-
-
-
17
-
-
0001135997
-
-
j) Only the 107 points between 400 and 900 km were used to calculate the periodogram, because the temperature fluctuation above 900 km is sensitive to the choice of the upper-boundary temperature and the fluctuation below 400 km is sensitive to the method used for determining the mean thermal profile.
-
(1982)
Astrophys. J.
, vol.263
, pp. 835
-
-
Scargle, J.D.1
-
18
-
-
1842357677
-
-
note
-
y - 1), this becomes κ ∂T/∂z = γ/γ - 1 〈(δρ)w〉 where δρ is the perturbation pressure. Evaluation of 〈δρ)w〉 with the WKB wave solution leads to (δ).
-
-
-
|