-
1
-
-
0003659725
-
-
Springer Verlag, New York
-
M. Mehring, Principles of High-Resolution NMR in Solids (Springer Verlag, New York, 1983); E. O. Stejskal and J. D. Memory, High Resolution NMR in the Solid State (Oxford Univ. Press, New York, 1994).
-
(1983)
Principles of High-Resolution NMR in Solids
-
-
Mehring, M.1
-
3
-
-
0002528855
-
-
B. H. Meier, Adv. Magn. Opt. Reson. 18, 1 (1994); A. Bennett, R. G. Griffin, S. Vega, NMR Basic Princ. Prog. 33, 1 (1994); J. M. Griffiths and R. G. Griffin, Anal. Chim. Acta 283, 1081 (1993).
-
(1994)
Adv. Magn. Opt. Reson.
, vol.18
, pp. 1
-
-
Meier, B.H.1
-
4
-
-
0002960267
-
-
B. H. Meier, Adv. Magn. Opt. Reson. 18, 1 (1994); A. Bennett, R. G. Griffin, S. Vega, NMR Basic Princ. Prog. 33, 1 (1994); J. M. Griffiths and R. G. Griffin, Anal. Chim. Acta 283, 1081 (1993).
-
(1994)
NMR Basic Princ. Prog.
, vol.33
, pp. 1
-
-
Bennett, A.1
Griffin, R.G.2
Vega, S.3
-
5
-
-
0027772469
-
-
B. H. Meier, Adv. Magn. Opt. Reson. 18, 1 (1994); A. Bennett, R. G. Griffin, S. Vega, NMR Basic Princ. Prog. 33, 1 (1994); J. M. Griffiths and R. G. Griffin, Anal. Chim. Acta 283, 1081 (1993).
-
(1993)
Anal. Chim. Acta
, vol.283
, pp. 1081
-
-
Griffiths, J.M.1
Griffin, R.G.2
-
6
-
-
0003943480
-
-
Clarendon, Oxford, England
-
A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford, England, 1961); C. P. Slichter, Principles of Magnetic Resonance (Springer-Verlag, Berlin, 1989).
-
(1961)
The Principles of Nuclear Magnetism
-
-
Abragam, A.1
-
7
-
-
0003418977
-
-
Springer-Verlag, Berlin
-
A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford, England, 1961); C. P. Slichter, Principles of Magnetic Resonance (Springer-Verlag, Berlin, 1989).
-
(1989)
Principles of Magnetic Resonance
-
-
Slichter, C.P.1
-
10
-
-
0000813313
-
-
G. Navon et al., Science 271, 1848 (1996).
-
(1996)
Science
, vol.271
, pp. 1848
-
-
Navon, G.1
-
11
-
-
0028534513
-
-
J. Zhou et al., Solid State Nucl. Magn. Reson. 3, 339 (1994); R. A. Wind, R. Lewis, H. Lock, G. E. Maciel, in Advances in Chemistry, R. E. Botto and Y. Sanada, Eds. (American Chemical Society, Washington, DC, 1993), pp. 1-26; L. R. Becerra, G. J. Gerfen, R. J. Temkin, D. J. Singel, R. G. Griffin, Phys. Rev. Lett. 71, 3561 (1993); D. J. Singel, H. Seidel, R. D. Kendrick. C. S. Yannoni, J. Magn. Reson. 81, 145 (1989).
-
(1994)
Solid State Nucl. Magn. Reson.
, vol.3
, pp. 339
-
-
Zhou, J.1
-
12
-
-
0028534513
-
-
R. E. Botto and Y. Sanada, Eds. American Chemical Society, Washington, DC
-
J. Zhou et al., Solid State Nucl. Magn. Reson. 3, 339 (1994); R. A. Wind, R. Lewis, H. Lock, G. E. Maciel, in Advances in Chemistry, R. E. Botto and Y. Sanada, Eds. (American Chemical Society, Washington, DC, 1993), pp. 1-26; L. R. Becerra, G. J. Gerfen, R. J. Temkin, D. J. Singel, R. G. Griffin, Phys. Rev. Lett. 71, 3561 (1993); D. J. Singel, H. Seidel, R. D. Kendrick. C. S. Yannoni, J. Magn. Reson. 81, 145 (1989).
-
(1993)
Advances in Chemistry
, pp. 1-26
-
-
Wind, R.A.1
Lewis, R.2
Lock, H.3
Maciel, G.E.4
-
13
-
-
4243811666
-
-
J. Zhou et al., Solid State Nucl. Magn. Reson. 3, 339 (1994); R. A. Wind, R. Lewis, H. Lock, G. E. Maciel, in Advances in Chemistry, R. E. Botto and Y. Sanada, Eds. (American Chemical Society, Washington, DC, 1993), pp. 1-26; L. R. Becerra, G. J. Gerfen, R. J. Temkin, D. J. Singel, R. G. Griffin, Phys. Rev. Lett. 71, 3561 (1993); D. J. Singel, H. Seidel, R. D. Kendrick. C. S. Yannoni, J. Magn. Reson. 81, 145 (1989).
-
(1993)
Phys. Rev. Lett.
, vol.71
, pp. 3561
-
-
Becerra, L.R.1
Gerfen, G.J.2
Temkin, R.J.3
Singel, D.J.4
Griffin, R.G.5
-
14
-
-
0041586648
-
-
J. Zhou et al., Solid State Nucl. Magn. Reson. 3, 339 (1994); R. A. Wind, R. Lewis, H. Lock, G. E. Maciel, in Advances in Chemistry, R. E. Botto and Y. Sanada, Eds. (American Chemical Society, Washington, DC, 1993), pp. 1-26; L. R. Becerra, G. J. Gerfen, R. J. Temkin, D. J. Singel, R. G. Griffin, Phys. Rev. Lett. 71, 3561 (1993); D. J. Singel, H. Seidel, R. D. Kendrick. C. S. Yannoni, J. Magn. Reson. 81, 145 (1989).
-
(1989)
J. Magn. Reson.
, vol.81
, pp. 145
-
-
Singel, D.J.1
Seidel, H.2
Kendrick, R.D.3
Yannoni, C.S.4
-
15
-
-
0002551973
-
-
R. A. Wind, M. J. Duijvestijn, C. van der Lugt, A. Manenschijn, J. Vriend, Prog. Nucl. Magn. Reson. Spectrosc. 17, 33 (1985).
-
(1985)
Prog. Nucl. Magn. Reson. Spectrosc.
, vol.17
, pp. 33
-
-
Wind, R.A.1
Duijvestijn, M.J.2
Van Der Lugt, C.3
Manenschijn, A.4
Vriend, J.5
-
18
-
-
0004133771
-
-
Academic Press, New York
-
L. J. Berliner, Ed., Spin Labeling (Academic Press, New York, 1976).
-
(1976)
Spin Labeling
-
-
Berliner, L.J.1
-
19
-
-
15444357692
-
-
note
-
The DNP enhancement as a function of TEMPO concentration can be qualitatively explained as follows. At concentrations below 40 mM, both the number of unpaired electrons and the rate of electron-electron cross-relaxation are decreased, leading to less efficient polarization transfer. However, higher TEMPO concentrations lead to an increased rate of nuclear spin-lattice relaxation, which severely attenuates the DNP enhancement through polarization leakage to the lattice.
-
-
-
-
21
-
-
0001471555
-
-
G. J. Gerfen, L. R. Becerra, D. A. Hall, D. J. Singel, R. G. Griffin, ibid. 102, 9494 (1995).
-
(1995)
J. Chem. Phys.
, vol.102
, pp. 9494
-
-
Gerfen, G.J.1
Becerra, L.R.2
Hall, D.A.3
Singel, D.J.4
Griffin, R.G.5
-
23
-
-
15444360034
-
-
note
-
1e at low temperature, allowing the inhomogeneous EPR line to be treated as a quasi-homogeneous line. Thus, off-center irradiation of the EPR line can significantly perturb the electronic dipolar reservoir. Because the TEMPO EPR line is substantially broader than the proton resonance frequency, a flip-flop transition of two electron spins can drive a nuclear spin flip in an energy-conserving process, and thus polarize the nuclear spins. Both the microwave power and magnetic field dependences of the DNP enhancement indicate that thermal mixing is the predominant mechanism, with the solid effect making a relatively small contribution.
-
-
-
-
25
-
-
15444340424
-
-
unpublished results
-
D. A. Hall et al., unpublished results.
-
-
-
Hall, D.A.1
-
26
-
-
15444360604
-
-
note
-
This probe differs from standard MAS probes in two important respects. In order to avoid arcing due to the low breakdown voltage of helium, we used transmission line probe tuning, so that the capacitors were located outside of the probe, isolated from any helium gas. In addition, the NMR coil was coated with Teflon and all solder joints were encased in silicone sealant. The probe is capable of achieving 80-kHz proton decoupling fields for up to 40 ms at 30 K. Microwaves from the gyrotron source are delivered to the sample through a waveguide that terminates 1 cm outside the NMR coil to avoid perturbation of NMR tuning. The probe's sensitivity is comparable to standard MAS probes at this magnetic field. The MAS assembly is a standard Chemegnatics system, with 5-mm zirconia rotors. The sample volume was ∼ 150 μl.
-
-
-
-
27
-
-
11744365808
-
-
V. Macho, R. Kendrick, C. S. Yannoni, J. Magn. Reson. 52, 450 (1983); A. Hackmann, H. Seidel, R. D. Kendrick, P. C. Myhre, C. S. Yannoni, ibid. 79, 148 (1988).
-
(1983)
J. Magn. Reson.
, vol.52
, pp. 450
-
-
Macho, V.1
Kendrick, R.2
Yannoni, C.S.3
-
28
-
-
15444339357
-
-
V. Macho, R. Kendrick, C. S. Yannoni, J. Magn. Reson. 52, 450 (1983); A. Hackmann, H. Seidel, R. D. Kendrick, P. C. Myhre, C. S. Yannoni, ibid. 79, 148 (1988).
-
(1988)
J. Magn. Reson.
, vol.79
, pp. 148
-
-
Hackmann, A.1
Seidel, H.2
Kendrick, R.D.3
Myhre, P.C.4
Yannoni, C.S.5
-
30
-
-
15444354181
-
-
note
-
Unlike gyrotrons, primary millimeter-wave sources, such as the extended interaction oscillator or backward wave oscillator rely on fragile slow-wave structures to generate radiation, and thus have limited operating lifetimes under high-power operation. A gyrotron uses a electron beam in a high magnetic field to generate radiation at the electron cyclotron frequency.
-
-
-
-
32
-
-
15444351685
-
-
note
-
An important parameter affecting the signal enhancements was the sample temperature. Enhancements of ∼ 100 were achieved at 25 K under otherwise similar experimental conditions as in Fig. 2. Enhancements at 100 K were ∼5. The presence of the TEMPO free radical in the sample did not detectably increase the NMR linewidths. Experimental evidence indicates that the origin of the NMR linewidths is primarily attributable to the noncrystalline nature of the sample.
-
-
-
-
34
-
-
0025194490
-
-
L. P. Macintosh, A. J. Wand, D. F. Lowry, A. G. Redfield, F. W. Dahlquist, Biochemistry 29, 6341 (1990).
-
(1990)
Biochemistry
, vol.29
, pp. 6341
-
-
Macintosh, L.P.1
Wand, A.J.2
Lowry, D.F.3
Redfield, A.G.4
Dahlquist, F.W.5
-
36
-
-
0542416623
-
-
K. Schmidt-Rohr and H.W. Spiess, Multidimesional Solid-State NMR and Polymers (Academic Press, London, 1994); G. C. Campbell and D. L. Vanderhart, J. Magn. Reson. 96, 69 (1992).
-
(1992)
J. Magn. Reson.
, vol.96
, pp. 69
-
-
Campbell, G.C.1
Vanderhart, D.L.2
-
37
-
-
15444358041
-
-
note
-
1 of the system is not significantly decreased by the solute.
-
-
-
-
38
-
-
22244475370
-
-
H. Brunner, R. H. Fritsch, K. H. Hausser, Z. Naturforsch. 42a, 1456 (1987); A. Henstra, P. Dirksen, J. Schmidt, W. T. Wenckebach, J. Magn. Reson. 77, 389 (1988).
-
(1987)
Z. Naturforsch.
, vol.42 A
, pp. 1456
-
-
Brunner, H.1
Fritsch, R.H.2
Hausser, K.H.3
-
39
-
-
45449121383
-
-
H. Brunner, R. H. Fritsch, K. H. Hausser, Z. Naturforsch. 42a, 1456 (1987); A. Henstra, P. Dirksen, J. Schmidt, W. T. Wenckebach, J. Magn. Reson. 77, 389 (1988).
-
(1988)
J. Magn. Reson.
, vol.77
, pp. 389
-
-
Henstra, A.1
Dirksen, P.2
Schmidt, J.3
Wenckebach, W.T.4
-
40
-
-
15444340286
-
-
note
-
We thank J. Bryant for technical assistance, S. Snow for preparation of the lysozyme sample, and C. Farrar for helpful discussions. Supported by NIH (grants GM-35382, RR-00995, RR-05539, and CA-06927).
-
-
-
|