-
1
-
-
0004035566
-
-
Cambridge Univ. Press, Cambridge
-
For a recent extensive review of x-ray binaries, see W. H. G. Lewin, J. van Paradijs, E. P. J. van den Heuvel, Eds., X-Ray Binaries (Cambridge Univ. Press, Cambridge, 1995).
-
(1995)
X-Ray Binaries
-
-
Lewin, W.H.G.1
Van Paradijs, J.2
Van Den Heuvel, E.P.J.3
-
2
-
-
0004113560
-
-
Freeman, San Francisco, CA
-
C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation (Freeman, San Francisco, CA, 1970).
-
(1970)
Gravitation
-
-
Misner, C.W.1
Thorne, K.S.2
Wheeler, J.A.3
-
4
-
-
1842351701
-
-
note
-
Throughout this article, we use the term black hole to refer only to stellar-mass black holes formed from gaseous stars. We do not consider supermassive black holes thought to exist in the cores of active galactic nuclei or primordial black holes.
-
-
-
-
6
-
-
0001455777
-
-
J. E. Grindlay et al., ibid. 205, L127 (1976); R. D. Belian, J. P. Conner, W. D. Evans, ibid., p. L135.
-
(1976)
Astrophys. J.
, vol.205
-
-
Grindlay, J.E.1
-
9
-
-
0000706466
-
-
For a readable review of accretion disks, see J. E. Pringle [Annu. Rev. Astron. Astrophys. 19, 137 (1981)] or J. Frank, A. King, and D. Raine [Accretion Power in Astrophysics (Cambridge Univ. Press, Cambridge, 1995)].
-
(1981)
Annu. Rev. Astron. Astrophys.
, vol.19
, pp. 137
-
-
Pringle, J.E.1
-
10
-
-
0004247486
-
-
Cambridge Univ. Press, Cambridge
-
For a readable review of accretion disks, see J. E. Pringle [Annu. Rev. Astron. Astrophys. 19, 137 (1981)] or J. Frank, A. King, and D. Raine [Accretion Power in Astrophysics (Cambridge Univ. Press, Cambridge, 1995)].
-
(1995)
Accretion Power in Astrophysics
-
-
Frank, J.1
King, A.2
Raine, D.3
-
11
-
-
1842393379
-
-
note
-
The time scale for gas to lose energy through radiation must be significantly shorter than the time scale on which angular momentum is transported in the disk. In addition, gravity must be the dominant force determining the structure of the disk.
-
-
-
-
17
-
-
0001936370
-
-
G. Hasinger and M. van der Klis, Astron. Astrophys. 255, 79 (1989); F. K. Lamb, in Neutron Stars: Theory and Observation, J. Ventura and D. Pines, Eds. (Kluwer, Dordrecht, Netherlands, 1991) pp. 445-481.
-
(1989)
Astron. Astrophys.
, vol.255
, pp. 79
-
-
Hasinger, G.1
Van Der Klis, M.2
-
18
-
-
0003126966
-
-
J. Ventura and D. Pines, Eds. Kluwer, Dordrecht, Netherlands
-
G. Hasinger and M. van der Klis, Astron. Astrophys. 255, 79 (1989); F. K. Lamb, in Neutron Stars: Theory and Observation, J. Ventura and D. Pines, Eds. (Kluwer, Dordrecht, Netherlands, 1991) pp. 445-481.
-
(1991)
Neutron Stars: Theory and Observation
, pp. 445-481
-
-
Lamb, F.K.1
-
19
-
-
1842401449
-
-
note
-
E is the maximum luminosity for an accreting source of a given mass and is equal to the luminosity at which radiation pressure from the outgoing radiation balances the gravitational force on the accreting matter.
-
-
-
-
24
-
-
0000965799
-
-
P. Ghosh and F. K. Lamb ibid. 234, 296 (1979); F. K. Lamb et al., Nature 317, 681 (1985).
-
(1985)
Nature
, vol.317
, pp. 681
-
-
Lamb, F.K.1
-
27
-
-
1842312342
-
-
note
-
One might expect the inner disk radius to move outward at high luminosities, thereby leading to an inverse correlation of frequency with count rate. However, the increased opacity of the accretion flow at high mass accretion rates may dominate over the effect of the luminosity and produce the observed correlation.
-
-
-
-
30
-
-
84891252838
-
-
In the atoll source KS 1731-260, the frequency difference of persistent emission QPOs is equal to half the x-ray burst QPO frequency [R. A. D. Wijnands and M. van der Klis, ibid. 482, L119 (1997)]. The x-ray burst QPO frequency is interpreted as twice the rotation frequency. In the atoll source 4U 1636-536, the frequency difference of QPOs detected in persistent emission differs by 1.9σ from half the x-ray burst QPO frequency [W. Zhang et al., IAU Circular 6541 (1997)]. However, the deviation is not statistically significant.
-
(1997)
Astrophys. J.
, vol.482
-
-
Wijnands, R.A.D.1
Van Der Klis, M.2
-
31
-
-
1842399190
-
-
In the atoll source KS 1731-260, the frequency difference of persistent emission QPOs is equal to half the x-ray burst QPO frequency [R. A. D. Wijnands and M. van der Klis, ibid. 482, L119 (1997)]. The x-ray burst QPO frequency is interpreted as twice the rotation frequency. In the atoll source 4U 1636-536, the frequency difference of QPOs detected in persistent emission differs by 1.9σ from half the x-ray burst QPO frequency [W. Zhang et al., IAU Circular 6541 (1997)]. However, the deviation is not statistically significant.
-
(1997)
IAU Circular 6541
-
-
Zhang, W.1
-
36
-
-
1842304656
-
-
note
-
One obvious interpretation, that the QPO frequency is the neutron star spin frequency, is excluded by the extent of the frequency variations.
-
-
-
-
38
-
-
1842388460
-
-
note
-
The QPO frequency observed at the higher mass accretion rate is slightly lower (3 to 7%) than at lower mass accretion rates. This can be understood if the sonic point moves outward at high accretion rates as suggested in (30).
-
-
-
-
39
-
-
1542694375
-
-
J. Orosz and C. Bailyn [Astrophys. J. 477, 876 (1997)] have measured the mass of the compact star in the transient black hole candidate x-ray binary GRO J1655-40 to an accuracy of 4% from observations made while the system was in quiescence.
-
(1997)
Astrophys. J.
, vol.477
, pp. 876
-
-
Orosz, J.1
Bailyn, C.2
-
43
-
-
1842265054
-
-
note
-
The mass uncertainty allows for a factor of 3 uncertainty in the moment of inertia.
-
-
-
-
45
-
-
0242634355
-
-
J. H. Taylor and J. M. Weisberg, Astrophys. J. 345, 434 (1989); A. Wolszczan, Nature 350, 688 (1991).
-
(1991)
Nature
, vol.350
, pp. 688
-
-
Wolszczan, A.1
-
48
-
-
1842358566
-
-
note
-
⊙ (2σ confidence) would rule out a number of soft equations of state.
-
-
-
-
51
-
-
0027982509
-
-
I. F. Mirabel and L. F. Rodriguez, Nature 371, 46 (1994); S. J. Tingay et al., ibid. 374, 141 (1995); R. M. Hjellming and M. P. Rupen, ibid. 375, 464 (1995).
-
(1994)
Nature
, vol.371
, pp. 46
-
-
Mirabel, I.F.1
Rodriguez, L.F.2
-
52
-
-
11944257038
-
-
I. F. Mirabel and L. F. Rodriguez, Nature 371, 46 (1994); S. J. Tingay et al., ibid. 374, 141 (1995); R. M. Hjellming and M. P. Rupen, ibid. 375, 464 (1995).
-
(1995)
Nature
, vol.374
, pp. 141
-
-
Tingay, S.J.1
-
53
-
-
0000766326
-
-
I. F. Mirabel and L. F. Rodriguez, Nature 371, 46 (1994); S. J. Tingay et al., ibid. 374, 141 (1995); R. M. Hjellming and M. P. Rupen, ibid. 375, 464 (1995).
-
(1995)
Nature
, vol.375
, pp. 464
-
-
Hjellming, R.M.1
Rupen, M.P.2
-
55
-
-
0002815408
-
-
W. H. G. Lewin, J. van Paradijs, E. P. J. van den Heuvel, Eds. Cambridge Univ. Press, Cambridge
-
The inclination of the orbital plane and the ratio of the masses of the companion and the compact star can be determined from ellipsoidal variations, which are asymmetries in the photometric light curve caused by tidal distortion of the companion star. Combined with the mass function, calculated from the radial velocity curve derived from spectroscopy of emission lines from the companion, the mass of the compact star can be determined. For a recent review, see J. van Paradijs and J. E. McClintock, in X-Ray Binaries, W. H. G. Lewin, J. van Paradijs, E. P. J. van den Heuvel, Eds. (Cambridge Univ. Press, Cambridge, 1995), pp. 58-125.
-
(1995)
X-Ray Binaries
, pp. 58-125
-
-
Van Paradijs, J.1
McClintock, J.E.2
-
59
-
-
1842280702
-
-
note
-
The accretion flow forms a thin disk at very large radii and is quasi-spherical close to the compact star.
-
-
-
-
61
-
-
12044258567
-
-
R. Narayan and I. Yi, ibid. 428, L13 (1994); M. A. Abramowicz et al., ibid. 438, L37 (1995); X. Chen et al., ibid. 443, L61 (1995); R. Narayan and I. Yi, 452, 710 (1995).
-
(1994)
Astrophys. J.
, vol.428
-
-
Narayan, R.1
Yi, I.2
-
62
-
-
11944272778
-
-
R. Narayan and I. Yi, ibid. 428, L13 (1994); M. A. Abramowicz et al., ibid. 438, L37 (1995); X. Chen et al., ibid. 443, L61 (1995); R. Narayan and I. Yi, 452, 710 (1995).
-
(1995)
Astrophys. J.
, vol.438
-
-
Abramowicz, M.A.1
-
63
-
-
11944263596
-
-
R. Narayan and I. Yi, ibid. 428, L13 (1994); M. A. Abramowicz et al., ibid. 438, L37 (1995); X. Chen et al., ibid. 443, L61 (1995); R. Narayan and I. Yi, 452, 710 (1995).
-
(1995)
Astrophys. J.
, vol.443
-
-
Chen, X.1
-
64
-
-
0043177233
-
-
R. Narayan and I. Yi, ibid. 428, L13 (1994); M. A. Abramowicz et al., ibid. 438, L37 (1995); X. Chen et al., ibid. 443, L61 (1995); R. Narayan and I. Yi, 452, 710 (1995).
-
(1995)
Astrophys. J.
, vol.452
, pp. 710
-
-
Narayan, R.1
Yi, I.2
-
67
-
-
1842395269
-
-
note
-
It has been suggested that storage of material in the disk is required to produce bright x-ray transients. For a recent review, see (43).
-
-
-
-
68
-
-
0002608067
-
-
Centrifugal force may reduce accretion onto neutron stars when the mass accretion rate is low and the magnetospheric radius is large; this is the "propeller effect" [A. F. Illarionov and R. A. Sunyaev, Sov. Astron. Lett. 1, 73 (1975)]. The importance of the propeller effect is uncertain, in part due to our lack of knowledge of the spin rates of neutron stars in x-ray binaries. These spin rates are currently being determined through QPO observations as described in the previous sections.
-
(1975)
Sov. Astron. Lett.
, vol.1
, pp. 73
-
-
Illarionov, A.F.1
Sunyaev, R.A.2
-
70
-
-
0011292176
-
-
E is higher for more massive stars. The quiescent mass accretion rates may differ because of the differing mass ratios of neutron stars versus black hole systems or because of irradiation of the companion in neutron star systems [see M. Ruderman et al., Astrophys. J. 343, 292 (1989) and J. M. Hameury et al., Astron. Astrophys. 277, 81 (1993)].
-
(1989)
Astrophys. J.
, vol.343
, pp. 292
-
-
Ruderman, M.1
-
71
-
-
0001976391
-
-
E is higher for more massive stars. The quiescent mass accretion rates may differ because of the differing mass ratios of neutron stars versus black hole systems or because of irradiation of the companion in neutron star systems [see M. Ruderman et al., Astrophys. J. 343, 292 (1989) and J. M. Hameury et al., Astron. Astrophys. 277, 81 (1993)].
-
(1993)
Astron. Astrophys.
, vol.277
, pp. 81
-
-
Hameury, J.M.1
-
72
-
-
1842321845
-
-
note
-
The accretion rates estimated in (53) use the x-ray luminosity and assume the validity of the ADAF model. These estimates are not suitable for a model-independent evaluation of the radiative efficiency.
-
-
-
-
73
-
-
1842320912
-
-
note
-
We thank T. Strohmayer for supplying Fig. 2, M. C. Miller and R. Narayan for communicating results before publication, and K. Chen for useful discussions.
-
-
-
|