메뉴 건너뛰기




Volumn 8, Issue 1, 1997, Pages 18-31

On neurobiological, neuro-fuzzy, machine learning, and statistical pattern recognition techniques

Author keywords

Classification; Clustering; Comparative experiments; Multiresolution; Neuro fuzzy systems; Overlapping classes; Pattern recognition; Vision systems

Indexed keywords

COMPUTER VISION; FUZZY SETS; LEARNING ALGORITHMS; LEARNING SYSTEMS; NEURAL NETWORKS; NEUROPHYSIOLOGY; PATTERN RECOGNITION SYSTEMS; STATISTICAL METHODS;

EID: 0030855588     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/72.554188     Document Type: Article
Times cited : (65)

References (65)
  • 1
    • 0000217085 scopus 로고
    • Tolerating noisy, irrelevant attributes in instance-based learning algorithms
    • D. W. Aha, "Tolerating noisy, irrelevant attributes in instance-based learning algorithms," Int. J. Man-Machine Studies, vol. 36, no. 1, pp. 267-287, 1992.
    • (1992) Int. J. Man-Machine Studies , vol.36 , Issue.1 , pp. 267-287
    • Aha, D.W.1
  • 2
    • 84972496625 scopus 로고
    • Neural networks: A review from a statistical perspective - Comment
    • S. Amari, "Neural networks: A review from a statistical perspective - Comment," Statist. Sci., vol. 9, no. 1, pp. 31-32, 1994.
    • (1994) Statist. Sci. , vol.9 , Issue.1 , pp. 31-32
    • Amari, S.1
  • 3
    • 21844522039 scopus 로고
    • A study of the classification capabilities of neural networks using unsupervised learning: A comparison with k-means clustering
    • P. V. Balakrishnan, M. C. Cooper, V. S. Jacob, and P. A. Lewis, "A study of the classification capabilities of neural networks using unsupervised learning: A comparison with k-means clustering," Psychometrika, vol. 59, no. 4, pp. 509-525, 1994.
    • (1994) Psychometrika , vol.59 , Issue.4 , pp. 509-525
    • Balakrishnan, P.V.1    Cooper, M.C.2    Jacob, V.S.3    Lewis, P.A.4
  • 6
    • 0347805112 scopus 로고
    • Rprop: A fast and robust backpropagation learning strategy
    • H. Braun and M. Riedmiller, "Rprop: A fast and robust backpropagation learning strategy," in Proc. ACNN, 1993.
    • (1993) Proc. ACNN
    • Braun, H.1    Riedmiller, M.2
  • 7
    • 84943175777 scopus 로고
    • Autoclass: A Bayesian classification system
    • San Mateo, CA: Morgan Kaufmann
    • P. Cheeseman and J. Stutz, "Autoclass: A Bayesian classification system" in Proc. 5th Int. Conf. Mach. Learning. San Mateo, CA: Morgan Kaufmann, 1988, pp. 55-64.
    • (1988) Proc. 5th Int. Conf. Mach. Learning , pp. 55-64
    • Cheeseman, P.1    Stutz, J.2
  • 8
    • 84972539015 scopus 로고
    • Neural networks: A review from a statistical perspective
    • B. Cheng and D. M. Titterington, "Neural networks: A review from a statistical perspective," Statist. Sci., vol. 9, no. 1, pp. 2-54, 1994.
    • (1994) Statist. Sci. , vol.9 , Issue.1 , pp. 2-54
    • Cheng, B.1    Titterington, D.M.2
  • 10
    • 0024042037 scopus 로고
    • Pattern and motion vision without Laplacian zero crossings
    • J. Daugman, "Pattern and motion vision without Laplacian zero crossings," J. Opt. Soc. Amer. A, vol. 5, pp. 1142-1148, 1988.
    • (1988) J. Opt. Soc. Amer. A , vol.5 , pp. 1142-1148
    • Daugman, J.1
  • 11
    • 85139983802 scopus 로고
    • Supervised and unsupervised discretization of continuous features
    • Online
    • J. Dougherty, R. Kohavi, and M. Sahami, "Supervised and unsupervised discretization of continuous features," in Machine Learning: Proc. 12th Int. Conf., 1995 [Online]. Available ftp://starry.stanford.edu/pub/ronnyk/disc.ps
    • (1995) Machine Learning: Proc. 12th Int. Conf.
    • Dougherty, J.1    Kohavi, R.2    Sahami, M.3
  • 13
    • 0030145401 scopus 로고    scopus 로고
    • A note on comparing classifiers
    • R. P. W. Duin, "A note on comparing classifiers," Pattern Recognition Lett., vol. 1, pp. 529-536, 1996.
    • (1996) Pattern Recognition Lett. , vol.1 , pp. 529-536
    • Duin, R.P.W.1
  • 14
    • 0343115514 scopus 로고
    • The contrast sensitivity of retinal ganglion cells of the cat
    • C. Enroth-Cugell and J. Robson, "The contrast sensitivity of retinal ganglion cells of the cat," J. Physiol., vol. 187, pp. 517-522, 1966.
    • (1966) J. Physiol. , vol.187 , pp. 517-522
    • Enroth-Cugell, C.1    Robson, J.2
  • 15
    • 0003000735 scopus 로고
    • Faster-learning variations on backpropagation: An empirical study
    • T. J. Sejnowski, G. E. Hinton, and D. S. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann
    • S. E. Fahlman, "Faster-learning variations on backpropagation: An empirical study," in Proc. 1988 Connectionist Models Summer School, T. J. Sejnowski, G. E. Hinton, and D. S. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann, 1988.
    • (1988) Proc. 1988 Connectionist Models Summer School
    • Fahlman, S.E.1
  • 16
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R. Fisher, "The use of multiple measurements in taxonomic problems," Ann. Eugenics, vol. 7, no. 2, pp. 179-188, 1936.
    • (1936) Ann. Eugenics , vol.7 , Issue.2 , pp. 179-188
    • Fisher, R.1
  • 17
    • 0028447117 scopus 로고
    • Computer as thinker/doer: Problem-solving environments for computational science
    • E. Gallopoulos, E. Houstis, and J. R. Rice, "Computer as thinker/doer: Problem-solving environments for computational science," IEEE Computa. Sci. Eng., vol. 1, no. 2, pp. 11-23, 1994.
    • (1994) IEEE Computa. Sci. Eng. , vol.1 , Issue.2 , pp. 11-23
    • Gallopoulos, E.1    Houstis, E.2    Rice, J.R.3
  • 21
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • R. C. Holte, "Very simple classification rules perform well on most commonly used datasets," Machine Learning, vol. 11, pp. 63-90, 1993.
    • (1993) Machine Learning , vol.11 , pp. 63-90
    • Holte, R.C.1
  • 24
    • 0001815795 scopus 로고
    • Neural networks and pattern recognition
    • J. M. Zurada, R. J. Marks, II, and E. G. Robinson, Eds. Piscataway, NJ: IEEE Press
    • A. K. Jain and J. Mao, "Neural networks and pattern recognition," in Computational Intell. Imitating Life, J. M. Zurada, R. J. Marks, II, and E. G. Robinson, Eds. Piscataway, NJ: IEEE Press, 1994, pp. 194-212.
    • (1994) Computational Intell. Imitating Life , pp. 194-212
    • Jain, A.K.1    Mao, J.2
  • 26
    • 0027720987 scopus 로고    scopus 로고
    • Backpropagation learns Marr's operator
    • A. Joshi and C. H. Lee, "Backpropagation learns Marr's operator," Biol. Cybern., vol. 70, 1993.
    • Biol. Cybern. , vol.70 , pp. 1993
    • Joshi, A.1    Lee, C.H.2
  • 29
    • 0028565943 scopus 로고
    • Bottom-up induction of oblivious, read-once decision graphs: Strengths and limitations
    • Online.
    • R. Kohavi, "Bottom-up induction of oblivious, read-once decision graphs: Strengths and limitations," in Proc. 12th Nat. Conf. Artificial Intel., 1994, pp. 613-618 [Online]. Available FTP://starry.stanford.edu/pub/ronnyk/aaai94.ps
    • (1994) Proc. 12th Nat. Conf. Artificial Intel. , pp. 613-618
    • Kohavi, R.1
  • 30
    • 84904506139 scopus 로고
    • MLC++: A machine learning library in C++
    • Washington, D.C.: IEEE Comput. Soc. Press, Online
    • R. Kohavi, G. John, R. Long, D. Manley, and K. Pfleger, "MLC++: A machine learning library in C++," in Tools With Artificial Intelligence. Washington, D.C.: IEEE Comput. Soc. Press, 1994, pp. 740-743 [Online]. Available FTP://starry.stanford.edu/pub/ronnyk/mlc/toolsmlc.ps
    • (1994) Tools with Artificial Intelligence. , pp. 740-743
    • Kohavi, R.1    John, G.2    Long, R.3    Manley, D.4    Pfleger, K.5
  • 34
    • 0023889195 scopus 로고
    • Segregation of form, color, movement, and depth: Anatomy, physiology, and perception
    • M. Livingstone and D. O. Hubel, "Segregation of form, color, movement, and depth: Anatomy, physiology, and perception," Sci., vol. 240, pp. 740-749, 1988.
    • (1988) Sci. , vol.240 , pp. 740-749
    • Livingstone, M.1    Hubel, D.O.2
  • 35
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • J. B. MacQueen, "Some methods for classification and analysis of multivariate observations," in Proc. 5th Berkeley Symp. Math. Statist. Probability, 1967, pp. 281-297.
    • (1967) Proc. 5th Berkeley Symp. Math. Statist. Probability , pp. 281-297
    • MacQueen, J.B.1
  • 36
    • 0012019262 scopus 로고
    • Intelligence: Computational versus artificial
    • R. J. Marks, II, "Intelligence: Computational versus artificial," IEEE Trans. Neural Networks, vol. 4, 1993.
    • (1993) IEEE Trans. Neural Networks , vol.4
    • Marks II, R.J.1
  • 37
    • 0018828706 scopus 로고
    • The theory of edge detection
    • D. Marr and E. Hilderth, "The theory of edge detection," in Proc. Roy. Soc. London, B, vol. 207, 1980, pp. 187-217.
    • (1980) Proc. Roy. Soc. London, B , vol.207 , pp. 187-217
    • Marr, D.1    Hilderth, E.2
  • 38
    • 84972492808 scopus 로고
    • Comment - Neural networks and cognitive science: Motivations and applications
    • J. L. McClelland, "Comment - Neural networks and cognitive science: Motivations and applications," Statist Sci., vol. 9, no. 1, pp. 42-45, 1994.
    • (1994) Statist Sci. , vol.9 , Issue.1 , pp. 42-45
    • McClelland, J.L.1
  • 39
    • 51249194645 scopus 로고
    • A logical calculus of ideas immanent in nervous activity
    • W. S. McCulloch and W. Pitts, "A logical calculus of ideas immanent in nervous activity," Bull. Math. Biophys., vol. 5, pp. 115-133, 1943.
    • (1943) Bull. Math. Biophys. , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 42
    • 0000229628 scopus 로고
    • A system for the induction of oblique decision trees
    • S. K. Murthy, S. Kasif, and S. Salzberg, "A system for the induction of oblique decision trees," J. Artificial Intell. Res., vol. 2, pp. 1-33, 1994.
    • (1994) J. Artificial Intell. Res. , vol.2 , pp. 1-33
    • Murthy, S.K.1    Kasif, S.2    Salzberg, S.3
  • 43
    • 85033519908 scopus 로고
    • Tests of a generalized MDS-choice model of stimulus identification
    • Bloomington, IN, Tech. Rep. 83
    • R. M. Nosofsky, "Tests of a generalized MDS-choice model of stimulus identification," Indiana Univ. Cognitive Sci. Program, Bloomington, IN, Tech. Rep. 83, 1992.
    • (1992) Indiana Univ. Cognitive Sci. Program
    • Nosofsky, R.M.1
  • 44
    • 0028942703 scopus 로고
    • An exponential pyramid model of the time course of size processing
    • Z. Pizlo, A. Rosenfeld, and J. Epelboim, "An exponential pyramid model of the time course of size processing," Vision Res., vol. 35, pp. 1089-1107, 1995.
    • (1995) Vision Res. , vol.35 , pp. 1089-1107
    • Pizlo, Z.1    Rosenfeld, A.2    Epelboim, J.3
  • 45
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J. R. Quinlan, "Induction of decision trees," Machine Learning, vol. 1, pp. 81-106, 1986.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 49
    • 0342692190 scopus 로고
    • Neural networks: A review from a statistical perspective - Comment
    • _, "Neural networks: A review from a statistical perspective - Comment," Statist. Sci., vol. 9, no. 1, pp. 45-48, 1994.
    • (1994) Statist. Sci. , vol.9 , Issue.1 , pp. 45-48
  • 50
    • 0000696616 scopus 로고
    • Neural networks and related methods for classification
    • B. D. Ripley, "Neural networks and related methods for classification," J. Roy. Statist. Soc., vol. 56, 1994.
    • (1994) J. Roy. Statist. Soc. , vol.56
    • Ripley, B.D.1
  • 54
    • 0014534297 scopus 로고
    • A new approach to clustering
    • E. Ruspini, "A new approach to clustering," Inf. Cont., vol. 15, pp. 22-32, 1969.
    • (1969) Inf. Cont. , vol.15 , pp. 22-32
    • Ruspini, E.1
  • 58
    • 0026927202 scopus 로고
    • Fuzzy min-max neural networks - Part 1: Classification
    • P. K. Simpson, "Fuzzy min-max neural networks - Part 1: Classification," IEEE Trans. Neural Networks, vol. 3, pp. 776-786, 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 776-786
    • Simpson, P.K.1
  • 59
    • 0027542561 scopus 로고
    • Fuzzy min-max neural networks-Part 2: Clustering
    • _, "Fuzzy min-max neural networks-Part 2: Clustering," IEEE Trans. Fuzzy Syst., vol. 1, pp. 32-45, 1993.
    • (1993) IEEE Trans. Fuzzy Syst. , vol.1 , pp. 32-45
  • 61
    • 84944178665 scopus 로고    scopus 로고
    • Hierarchial grouping to optimize an objective function
    • J. H. Ward, "Hierarchial grouping to optimize an objective function," J. Amer. Statist. Assoc., vol. 58, pp. 236-244.
    • J. Amer. Statist. Assoc. , vol.58 , pp. 236-244
    • Ward, J.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.