메뉴 건너뛰기




Volumn 30, Issue 1, 1997, Pages 141-149

Hebbian learning subspace method: A new approach

Author keywords

Learning methods; Neural networks; Optical character recognition; Subspace methods; Weighted distance

Indexed keywords

LEARNING ALGORITHMS; NEURAL NETWORKS; OPTICAL CHARACTER RECOGNITION; VECTORS;

EID: 0030835104     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0031-3203(96)00054-4     Document Type: Article
Times cited : (2)

References (16)
  • 2
    • 0019279343 scopus 로고
    • A 1000 word recognition system based on the learning subspace method and redundant hash addressing
    • Miami Beach, Florida
    • T. Kohonen, Riittinen, M. Jalanko, E. Reuhkala and S. Haltsonen, A 1000 word recognition system based on the learning subspace method and redundant hash addressing. In Fifth Int. Conf. on Pattern Recognition, 158-165. Miami Beach, Florida (1980).
    • (1980) Fifth Int. Conf. on Pattern Recognition , pp. 158-165
    • Kohonen, T.1    Riittinen2    Jalanko, M.3    Reuhkala, E.4    Haltsonen, S.5
  • 3
    • 0020880649 scopus 로고
    • The ALSM algorithm - An improved subspace method of classification
    • E. Oja and M. Kuusela, The ALSM algorithm - an improved subspace method of classification, Pattern Recognition 16 (4), 421-427 (1983).
    • (1983) Pattern Recognition , vol.16 , Issue.4 , pp. 421-427
    • Oja, E.1    Kuusela, M.2
  • 4
    • 0020464111 scopus 로고
    • A simplified neuron model as a principal component analyzer
    • E. Oja, A simplified neuron model as a principal component analyzer, J. Math. Biol. 15, 267-273 (1982).
    • (1982) J. Math. Biol. , vol.15 , pp. 267-273
    • Oja, E.1
  • 5
    • 0002399288 scopus 로고
    • Neural networks, principal components and subspaces
    • E. Oja, Neural networks, principal components and subspaces, Int. J. Neural Syst. 1, 61-68 (1989).
    • (1989) Int. J. Neural Syst. , vol.1 , pp. 61-68
    • Oja, E.1
  • 6
    • 84910828260 scopus 로고
    • Application of the karhunen-loeve expansion to feature selection and ordering
    • K. Fukunaga and W.L.G. Koontz, Application of the karhunen-loeve expansion to feature selection and ordering, IEEE Trans. Comput. C-19, 311-318 (1970).
    • (1970) IEEE Trans. Comput. , vol.C-19 , pp. 311-318
    • Fukunaga, K.1    Koontz, W.L.G.2
  • 7
    • 0020542759 scopus 로고
    • An analysis of convergence for a learning version of the subspace method
    • E. Oja and J. Karhunen, An analysis of convergence for a learning version of the subspace method, J. Math. Annal. Appl. 91, 102-111 (1983).
    • (1983) J. Math. Annal. Appl. , vol.91 , pp. 102-111
    • Oja, E.1    Karhunen, J.2
  • 8
    • 0029359427 scopus 로고
    • A genetic approach to the selection of a (near) optimal subset of principal components for discrimination
    • M. Prakash and M. Narasimha Murty, A genetic approach to the selection of a (near) optimal subset of principal components for discrimination, Pattern Recognition Lett. 16, 781-787 (1995).
    • (1995) Pattern Recognition Lett. , vol.16 , pp. 781-787
    • Prakash, M.1    Narasimha Murty, M.2
  • 10
    • 0002937051 scopus 로고
    • An optimality principle for unsupervised learning
    • Touretzky D.S., ed.
    • T. D. Sanger, An optimality principle for unsupervised learning, In Touretzky D.S., ed., Advances in Neural Information Processing, pp. 11-19 (1989).
    • (1989) Advances in Neural Information Processing , pp. 11-19
    • Sanger, T.D.1
  • 11
    • 0025164912 scopus 로고
    • Development of feature detectors by self-organization
    • J. Rubner and K. Schulten, . Development of feature detectors by self-organization, Biol. Cybernet. 62, 193-199 (1990).
    • (1990) Biol. Cybernet , vol.62 , pp. 193-199
    • Rubner, J.1    Schulten, K.2
  • 12
    • 0025567204 scopus 로고
    • Orthogonal learning network for constrained principal component problem
    • San Diego
    • S. Y. Kung, Orthogonal learning network for constrained principal component problem. In International Joint Conference on Neural Networks, pp. 1-441-1-449, San Diego (1990).
    • (1990) International Joint Conference on Neural Networks , pp. 1441-1449
    • Kung, S.Y.1
  • 13
    • 0026290237 scopus 로고
    • Principal component extraction using recursive least squares learning method
    • Singapore
    • S. Bannour and M. R. Azimi-Sadjadi, Principal component extraction using recursive least squares learning method. In International Joint Conference on Neural Networks, pp. 2110-2115, Singapore (1991).
    • (1991) International Joint Conference on Neural Networks , pp. 2110-2115
    • Bannour, S.1    Azimi-Sadjadi, M.R.2
  • 15
    • 0024944612 scopus 로고
    • A comparison of a nearest neighbour classifier and a neural network for numeric handprint character recognition
    • Washington D.C.
    • W. E. Weideman, M. T. Manry and H. C. Yau, A comparison of a nearest neighbour classifier and a neural network for numeric handprint character recognition, In International Joint Conference on Neural Networks, pp. 117-120, Washington D.C. (1989).
    • (1989) International Joint Conference on Neural Networks , pp. 117-120
    • Weideman, W.E.1    Manry, M.T.2    Yau, H.C.3
  • 16
    • 0025677015 scopus 로고
    • Rotation invariant image recognition using features selected via a systematic method
    • K. Alireza and Y. Hua Hong, Rotation invariant image recognition using features selected via a systematic method, Pattern. Recognition 23 (10), 1089-1101 (1992).
    • (1992) Pattern. Recognition , vol.23 , Issue.10 , pp. 1089-1101
    • Alireza, K.1    Hua Hong, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.