-
1
-
-
0343742887
-
-
Iijima S. Nature 1991, 354, 567.
-
(1991)
Nature
, vol.354
, pp. 567
-
-
Iijima, S.1
-
4
-
-
5844348017
-
-
Sladkov, A. M.; Mel'nichenko, V. M.; Nikulin, Yu. N. Usp. Khim. 1982, 52, 736.
-
(1982)
Usp. Khim.
, vol.52
, pp. 736
-
-
Sladkov, A.M.1
Mel'nichenko, V.M.2
Nikulin, Yu.N.3
-
5
-
-
0242377524
-
-
Thomas, J.; Weston, N. E.; O'Connor, T. E. J. Am. Chem. Soc. 1962, 84, 4619.
-
(1962)
J. Am. Chem. Soc.
, vol.84
, pp. 4619
-
-
Thomas, J.1
Weston, N.E.2
O'Connor, T.E.3
-
6
-
-
0028769665
-
-
Stephan, O.; Ajayan, P. M.; Colliex, C.; Redlich, Ph.; Lambert, J. M.; Bernier, P.; Lefin, P. Science 1994, 266, 1683. Weng-Sieh, Z.; Cherrey, K.; Chopra, N. G.; Blase, X.; Miyamoto, Y.; Rubio, A.; Cohen, M. L.; Louie, S. G.; Zettl, A. Phys. Rev. 1995, B51, 11229.
-
(1994)
Science
, vol.266
, pp. 1683
-
-
Stephan, O.1
Ajayan, P.M.2
Colliex, C.3
Redlich, Ph.4
Lambert, J.M.5
Bernier, P.6
Lefin, P.7
-
7
-
-
35949006917
-
-
Stephan, O.; Ajayan, P. M.; Colliex, C.; Redlich, Ph.; Lambert, J. M.; Bernier, P.; Lefin, P. Science 1994, 266, 1683. Weng-Sieh, Z.; Cherrey, K.; Chopra, N. G.; Blase, X.; Miyamoto, Y.; Rubio, A.; Cohen, M. L.; Louie, S. G.; Zettl, A. Phys. Rev. 1995, B51, 11229.
-
(1995)
Phys. Rev.
, vol.B51
, pp. 11229
-
-
Weng-Sieh, Z.1
Cherrey, K.2
Chopra, N.G.3
Blase, X.4
Miyamoto, Y.5
Rubio, A.6
Cohen, M.L.7
Louie, S.G.8
Zettl, A.9
-
8
-
-
33144483993
-
-
Rubio, A.; Corkill, J.; Cohen, M. L. Phys. Rev. 1994, B49, 5081.
-
(1994)
Phys. Rev.
, vol.B49
, pp. 5081
-
-
Rubio, A.1
Corkill, J.2
Cohen, M.L.3
-
9
-
-
4243915348
-
-
Miyamoto, Y.; Rubio, A.; Cohen, M. L.; Louie, S. G. Phys. Rev. 1994, B50, 4976.
-
(1994)
Phys. Rev.
, vol.B50
, pp. 4976
-
-
Miyamoto, Y.1
Rubio, A.2
Cohen, M.L.3
Louie, S.G.4
-
10
-
-
0000166342
-
-
Zhu, H. Y.; Klein, D. J.; Seitz, W. A. Inorg. Chem. 1995, 34, 1377.
-
(1995)
Inorg. Chem.
, vol.34
, pp. 1377
-
-
Zhu, H.Y.1
Klein, D.J.2
Seitz, W.A.3
-
11
-
-
0002180508
-
-
Bochvar, D. A.; Gal'pern, E. G.; Stankevich, I. V. Zh. Strukt. Khim. 1988, 29, 26.
-
(1988)
Zh. Strukt. Khim.
, vol.29
, pp. 26
-
-
Bochvar, D.A.1
Gal'pern, E.G.2
Stankevich, I.V.3
-
14
-
-
0000193541
-
-
Klein, D. J.; Seitz, W. A.; Schmalz, T. G. J. Phys. Chem. 1993, 97, 1231.
-
(1993)
J. Phys. Chem.
, vol.97
, pp. 1231
-
-
Klein, D.J.1
Seitz, W.A.2
Schmalz, T.G.3
-
17
-
-
0041458699
-
-
Bochvar, D. A.; Stankevich, I. V.; Chistyakov, A. L. Zh. Phys. Khim. 1961, 35, 1337.
-
(1961)
Zh. Phys. Khim.
, vol.35
, pp. 1337
-
-
Bochvar, D.A.1
Stankevich, I.V.2
Chistyakov, A.L.3
-
18
-
-
5844366342
-
-
Bochvar, D. A.; Stankevich, I. V.; Chistyakov, A. L. Zh. Phys. Khim. 1961, 39, 1365.
-
(1961)
Zh. Phys. Khim.
, vol.39
, pp. 1365
-
-
Bochvar, D.A.1
Stankevich, I.V.2
Chistyakov, A.L.3
-
20
-
-
0001741150
-
-
Zunger, A.; Katzir, A.; Halperin, A. Phys. Rev. 1976, B13, 5560.
-
(1976)
Phys. Rev.
, vol.B13
, pp. 5560
-
-
Zunger, A.1
Katzir, A.2
Halperin, A.3
-
21
-
-
5844321432
-
-
note
-
We have also investigated tubular forms of aluminum nitride using 1.96 Å Al-N bond length. Thus, the AlN tube diameter is 1.37 times larger than that of a corresponding carbon nanotube. The calculation has shown that the spectrum gap of AlN nanotubes is greater than that of BN nanotubes; it equals ∼7 eV (Table 1). The spectra of C-AlN nanotubes should be qualitatively the same as those of C-BN nanotube superlattices. But to calculate them, it is necessary to know their structure in detail. These C-AlN superlattices should be considerably strained because of a difference in C-C and Al-N bond lengths.
-
-
-
|