메뉴 건너뛰기




Volumn 277, Issue 5326, 1997, Pages 670-673

Seismic evidence of partial melt within a possibly ubiquitous low- velocity layer at the base of the mantle

Author keywords

[No Author keywords available]

Indexed keywords

CORE/MANTLE BOUNDARY; LOW VELOCITY ZONE; MANTLE (LOWER); MANTLE PLUME; PARTIAL MELTING;

EID: 0030822558     PISSN: 00368075     EISSN: None     Source Type: Journal    
DOI: 10.1126/science.277.5326.670     Document Type: Article
Times cited : (129)

References (33)
  • 1
  • 2
    • 0029666565 scopus 로고    scopus 로고
    • E. Garnero and D. V. Helmberger, Phys. Earth Planet Inter. 91, 161 (1995); Geophys. Res. Lett. 23, 977 (1996); E. Garnero, S. Grand, D. V. Helmberger, ibid. 20, 1843 (1993).
    • (1996) Geophys. Res. Lett. , vol.23 , pp. 977
  • 7
    • 0017019815 scopus 로고
    • J. P. Watt, G. F. Davies, R. J. O'Connell, Rev. Geophys. Space Phys. 14, 541 (1976); R. J. O'Connell and B. Budiansky, J. Geophys. Res. 82, 5719 (1977).
    • (1977) J. Geophys. Res. , vol.82 , pp. 5719
    • O'Connell, R.J.1    Budiansky, B.2
  • 8
    • 0001146420 scopus 로고
    • H. Kanamori, J. Geophys. Res. 72, 559 (1967); J. Schlittenhardt, J. Geophys. 60, 1 (1986); J. E. Vidale and H. M. Benz, Nature 359, 627 (1993).
    • (1967) J. Geophys. Res. , vol.72 , pp. 559
    • Kanamori, H.1
  • 9
    • 0022916825 scopus 로고
    • H. Kanamori, J. Geophys. Res. 72, 559 (1967); J. Schlittenhardt, J. Geophys. 60, 1 (1986); J. E. Vidale and H. M. Benz, Nature 359, 627 (1993).
    • (1986) J. Geophys. , vol.60 , pp. 1
    • Schlittenhardt, J.1
  • 10
    • 0027095128 scopus 로고
    • H. Kanamori, J. Geophys. Res. 72, 559 (1967); J. Schlittenhardt, J. Geophys. 60, 1 (1986); J. E. Vidale and H. M. Benz, Nature 359, 627 (1993).
    • (1993) Nature , vol.359 , pp. 627
    • Vidale, J.E.1    Benz, H.M.2
  • 11
    • 0027871009 scopus 로고
    • F. Krüger, M. Weber, F. Scherbaum, J. Schlittenhardt, Geophys. Res. Lett. 20, 1475 (1993); Geophys. J. Int. 122, 637 (1995); F. Krügër, F. Scherbaum, M. Weber, J. Schlittenhardt, Bull. Seismol. Soc. Am. 86, 737 (1996); F. Scherbaum, F. Krüger, M. Weber, J. Geophys. Res. 102, 507 (1997).
    • (1993) Geophys. Res. Lett. , vol.20 , pp. 1475
    • Krüger, F.1    Weber, M.2    Scherbaum, F.3    Schlittenhardt, J.4
  • 12
    • 0029479614 scopus 로고
    • F. Krüger, M. Weber, F. Scherbaum, J. Schlittenhardt, Geophys. Res. Lett. 20, 1475 (1993); Geophys. J. Int. 122, 637 (1995); F. Krügër, F. Scherbaum, M. Weber, J. Schlittenhardt, Bull. Seismol. Soc. Am. 86, 737 (1996); F. Scherbaum, F. Krüger, M. Weber, J. Geophys. Res. 102, 507 (1997).
    • (1995) Geophys. J. Int. , vol.122 , pp. 637
  • 13
    • 0030442031 scopus 로고    scopus 로고
    • F. Krüger, M. Weber, F. Scherbaum, J. Schlittenhardt, Geophys. Res. Lett. 20, 1475 (1993); Geophys. J. Int. 122, 637 (1995); F. Krügër, F. Scherbaum, M. Weber, J. Schlittenhardt, Bull. Seismol. Soc. Am. 86, 737 (1996); F. Scherbaum, F. Krüger, M. Weber, J. Geophys. Res. 102, 507 (1997).
    • (1996) Bull. Seismol. Soc. Am. , vol.86 , pp. 737
    • Krügër, F.1    Scherbaum, F.2    Weber, M.3    Schlittenhardt, J.4
  • 14
    • 0030755822 scopus 로고    scopus 로고
    • F. Krüger, M. Weber, F. Scherbaum, J. Schlittenhardt, Geophys. Res. Lett. 20, 1475 (1993); Geophys. J. Int. 122, 637 (1995); F. Krügër, F. Scherbaum, M. Weber, J. Schlittenhardt, Bull. Seismol. Soc. Am. 86, 737 (1996); F. Scherbaum, F. Krüger, M. Weber, J. Geophys. Res. 102, 507 (1997).
    • (1997) J. Geophys. Res. , vol.102 , pp. 507
    • Scherbaum, F.1    Krüger, F.2    Weber, M.3
  • 15
    • 15444344024 scopus 로고    scopus 로고
    • note
    • Traditional stacking assumes that travel-time variation across the array is a linear function of the great-circle distance from the source. This is valid for small aperture arrays and teleseismic data but limits stacking to a single source or sources that are essentially co-located. Double-beam stacking (6) relaxes the latter restriction, stacking over receiver and source arrays and resulting in improved slowness and azimuth resolution. The source array aperture, however, must be small in comparison with epicentral distance. With an assumption of a target phase, we can use our approach to stack over large arrays.
  • 16
    • 15444342932 scopus 로고
    • B. L. N. Kennett, Ed. Research School of Earth Sciences, Australian National University, Canberra, Australia
    • B. L. N. Kennett, in International Association of Seismology and Physics of the Earth's Interior (IASPEI) 1991 Seismological Tables, B. L. N. Kennett, Ed. (Research School of Earth Sciences, Australian National University, Canberra, Australia, 1991), pp. 164-167. We modified the model by depressing the CMB 100 km while retaining the lowermost mantle velocity gradients. This allowed us to compute PcP and PdP times appropriate for a slow D″ velocity layer without having to alter the overlying velocity structure (for example, slow PcP would map as a reflector below the nominal CMB). Ellipticity corrections were applied to the predicted P and PdP times, the latter approximated by the tabulated correction for PcP. Because our focus was on the lowermost mantle, the error in this approximation was ≤0.01 s.
    • (1991) International Association of Seismology and Physics of the Earth's Interior (IASPEI) 1991 Seismological Tables , pp. 164-167
    • Kennett, B.L.N.1
  • 17
    • 15444357318 scopus 로고    scopus 로고
    • note
    • Stacking was preceded by alignment of P wave forms and deconvolution of the source-time function. Alignment of P reduced travel-time variability due to shallow velocity structure and source mislocation. Aligned wave forms were averaged to eliminate variable station-side contributions, leaving the source-time function convolved against a mean mantle response. This was deconvolved from the aligned wave forms, reducing interevent variation of wave form shape to <10% of peak amplitude.
  • 18
    • 15444355457 scopus 로고    scopus 로고
    • note
    • To obtain the synthetic stack, we generated raytheory synthetic data matching the distance distribution of the source region data set and consisting of P and PcP, the only phases occurring in the absence of a lower mantle reflector. The synthetic seismograms were convolved with the mean deconvolved P wave form (9) before they were stacked.
  • 19
    • 15444338874 scopus 로고    scopus 로고
    • note
    • Residual travel-time variability is parameterized as the standard deviation of a zero-mean Gaussian perturbation applied to delay time in the synthetics.
  • 20
    • 15444357448 scopus 로고    scopus 로고
    • note
    • Velocities above the reflector were fixed at IASP91 values for the mean discontinuity depth. We obtained the mean plane-layer reflection coefficient by averaging over the ray parameter weighted by the ray-parameter distribution of stacked data.
  • 21
    • 15444349694 scopus 로고    scopus 로고
    • note
    • Amplitudes of PdP are affected by variations in lowermost mantle attenuation, velocity heterogeneity, and reflector topography. The factor of 2 expansion of the acceptable range of R is intended to avoid the introduction of biases from these factors and from approximations inherent to ray theory. We also required that the resulting mean PcP reflection coefficient be positive and less than 0.42 (0.33 for SA) after we applied the same perturbations to velocity and density at the CMB. This constraint eliminates models with large compressional to shear velocity variation ratios. The maximum value for each source region is a factor of 3 greater than the largest accepted estimate (Table 1) to allow for unmodeled variations in geometric spreading and possibly severe attenuation within the LVL.
  • 22
    • 15444342728 scopus 로고    scopus 로고
    • note
    • Velocity and density vary linearly across the transition. To compute the mean reflection coefficient, we ok the magnitude of the complex reflection coefficient at peak frequency and ignored wave form distortion effects.
  • 23
    • 15444352987 scopus 로고    scopus 로고
    • note
    • p increases produce PdP and PcP reflection coefficients that are too large. Some Monte Carlo models had reversed-polarity PdP. Eliminating these and accepting only those triplets that predict normalpolarity PdP do not affect our conclusions.
  • 24
    • 0026064863 scopus 로고
    • E. Knittle and R. Jeanloz, Science 251, 1438 (1991); F. Goarant, F. Guyot, J. Peyronneau, J.-P. Poirier, J. Geophys. Res. 97, 4477 (1992); R. Jeanloz, in Relating Geophysical Structures and Processes: The Jeffreys Volume, K. Aki and R. Dmowska, Eds., vol. 76 of Geophysical Monograph Series (American Geophysical Union, Washington, DC, 1993), pp. 121-127.
    • (1991) Science , vol.251 , pp. 1438
    • Knittle, E.1    Jeanloz, R.2
  • 25
    • 0026472173 scopus 로고
    • E. Knittle and R. Jeanloz, Science 251, 1438 (1991); F. Goarant, F. Guyot, J. Peyronneau, J.-P. Poirier, J. Geophys. Res. 97, 4477 (1992); R. Jeanloz, in Relating Geophysical Structures and Processes: The Jeffreys Volume, K. Aki and R. Dmowska, Eds., vol. 76 of Geophysical Monograph Series (American Geophysical Union, Washington, DC, 1993), pp. 121-127.
    • (1992) J. Geophys. Res. , vol.97 , pp. 4477
    • Goarant, F.1    Guyot, F.2    Peyronneau, J.3    Poirier, J.-P.4
  • 26
    • 0026064863 scopus 로고
    • K. Aki and R. Dmowska, Eds., Geophysical Monograph Series American Geophysical Union, Washington, DC
    • E. Knittle and R. Jeanloz, Science 251, 1438 (1991); F. Goarant, F. Guyot, J. Peyronneau, J.-P. Poirier, J. Geophys. Res. 97, 4477 (1992); R. Jeanloz, in Relating Geophysical Structures and Processes: The Jeffreys Volume, K. Aki and R. Dmowska, Eds., vol. 76 of Geophysical Monograph Series (American Geophysical Union, Washington, DC, 1993), pp. 121-127.
    • (1993) Relating Geophysical Structures and Processes: The Jeffreys Volume , vol.76 , pp. 121-127
    • Jeanloz, R.1
  • 32
    • 2642590073 scopus 로고
    • F. D. Stacey and D. E. Loper, Phys. Earth Planet. Inter. 33, 45 (1983); N. H. Sleep, J. Geophys. Res. 97, 20007 (1992).
    • (1992) J. Geophys. Res. , vol.97 , pp. 20007
    • Sleep, N.H.1
  • 33
    • 15444342619 scopus 로고    scopus 로고
    • note
    • This research was supported by NSF and Lawrence Livermore National Laboratory, Institute of Geophysics and Planetary Physics. This is Institute of Tectonics contribution 308.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.