-
1
-
-
0002652021
-
-
Morrison, J. D., Ed.; Academic Press: New York
-
(a) Evans, D. A. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press: New York, 1984; Vol. 3, pp 1-110.
-
(1984)
Asymmetric Synthesis
, vol.3
, pp. 1-110
-
-
Evans, D.A.1
-
2
-
-
0000182592
-
-
Morrison, J. D., Ed.; Academic Press: New York
-
(b) Lutomski, K. A.; Meyers, A. I. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press: New York, 1984; Vol. 3, pp 213-274.
-
(1984)
Asymmetric Synthesis
, vol.3
, pp. 213-274
-
-
Lutomski, K.A.1
Meyers, A.I.2
-
3
-
-
0000310038
-
-
Scheffold, R., Ed.; Springer: Berlin-Heidelberg
-
(c) Seebach, D.; Imwinkelried, R.; Weber, T. In Modern Synthetic Synthesis; Scheffold, R., Ed.; Springer: Berlin-Heidelberg, 1986; Vol. 4, pp 125-259.
-
(1986)
Modern Synthetic Synthesis
, vol.4
, pp. 125-259
-
-
Seebach, D.1
Imwinkelried, R.2
Weber, T.3
-
5
-
-
0002782655
-
-
Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York
-
(e) Caine, D. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York, 1991; Vol. 3, pp 1-63.
-
(1991)
Comprehensive Organic Synthesis
, vol.3
, pp. 1-63
-
-
Caine, D.1
-
6
-
-
33847799932
-
-
Meyers, A. I.; Knaus, G.; Kamata, K.; Ford, M. E. J. Am. Chem. Soc. 1976, 98, 567.
-
(1976)
J. Am. Chem. Soc.
, vol.98
, pp. 567
-
-
Meyers, A.I.1
Knaus, G.2
Kamata, K.3
Ford, M.E.4
-
9
-
-
0000176388
-
-
Kawanami, Y.; Ito, Y.; Kitagawa, T.; Taniguchi, Y.; Katsuki, T.; Yamaguchi, M. Tetrahedron Lett. 1984, 25, 857.
-
(1984)
Tetrahedron Lett.
, vol.25
, pp. 857
-
-
Kawanami, Y.1
Ito, Y.2
Kitagawa, T.3
Taniguchi, Y.4
Katsuki, T.5
Yamaguchi, M.6
-
10
-
-
84961502301
-
-
For additional examples, see: (a) Davies, S. G. Pure Appl. Chem. 1988, 60, 13. (b) Drewes, S. E.; Malissar, D. G. S.; Roos, G. H. O. Chem. Ber. 1993, 126, 2663. (c) Abiko, A.; Moriya, O.; Filla, S. A.; Masamune, S. Angew. Chem., Int. Ed. Engl. 1995, 34, 793.
-
(1988)
Pure Appl. Chem.
, vol.60
, pp. 13
-
-
Davies, S.G.1
-
11
-
-
0000891288
-
-
For additional examples, see: (a) Davies, S. G. Pure Appl. Chem. 1988, 60, 13. (b) Drewes, S. E.; Malissar, D. G. S.; Roos, G. H. O. Chem. Ber. 1993, 126, 2663. (c) Abiko, A.; Moriya, O.; Filla, S. A.; Masamune, S. Angew. Chem., Int. Ed. Engl. 1995, 34, 793.
-
(1993)
Chem. Ber.
, vol.126
, pp. 2663
-
-
Drewes, S.E.1
Malissar, D.G.S.2
Roos, G.H.O.3
-
12
-
-
33748237133
-
-
For additional examples, see: (a) Davies, S. G. Pure Appl. Chem. 1988, 60, 13. (b) Drewes, S. E.; Malissar, D. G. S.; Roos, G. H. O. Chem. Ber. 1993, 126, 2663. (c) Abiko, A.; Moriya, O.; Filla, S. A.; Masamune, S. Angew. Chem., Int. Ed. Engl. 1995, 34, 793.
-
(1995)
Angew. Chem., Int. Ed. Engl.
, vol.34
, pp. 793
-
-
Abiko, A.1
Moriya, O.2
Filla, S.A.3
Masamune, S.4
-
13
-
-
33845554892
-
-
(a) Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982, 104, 1737.
-
(1982)
J. Am. Chem. Soc.
, vol.104
, pp. 1737
-
-
Evans, D.A.1
Ennis, M.D.2
Mathre, D.J.3
-
14
-
-
1842312080
-
-
Ph.D. Thesis, California Institute of Technology
-
(b) Mathre, D. Ph.D. Thesis, California Institute of Technology, 1985.
-
(1985)
-
-
Mathre, D.1
-
15
-
-
0000512987
-
-
(a) Oppolzer, W.; Moretti, R.; Thomi, S. Tetrahedron Lett. 1989, 30, 5603.
-
(1989)
Tetrahedron Lett.
, vol.30
, pp. 5603
-
-
Oppolzer, W.1
Moretti, R.2
Thomi, S.3
-
16
-
-
84985611103
-
-
(b) For a previous camphor-derived system, see: Schmierer, R.; Grotemeier, G.; Helmchen, G.; Selim, A. Angew. Chem., Int. Ed. Engl. 1981, 20, 207.
-
(1981)
Angew. Chem., Int. Ed. Engl.
, vol.20
, pp. 207
-
-
Schmierer, R.1
Grotemeier, G.2
Helmchen, G.3
Selim, A.4
-
17
-
-
0027960624
-
-
Myers, A. G.; Yang, B. H.; Chen, H.; Gleason, J. L. J. Am. Chem. Soc. 1994, 116, 9361.
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 9361
-
-
Myers, A.G.1
Yang, B.H.2
Chen, H.3
Gleason, J.L.4
-
18
-
-
0031047509
-
-
For the specific case of the alkylation of pseudoephedrine glycinamide and its application to the preparation of highly enantiomerically enriched α-amino acids, see: (a) Myers, A. G.; Gleason, J. L.; Yoon, T.; Kung, D. W. J. Am. Chem. Soc. 1997, 119, 656. (b) Myers, A. G.; Gleason, J. L.; Yoon, T. J. Am. Chem. Soc. 1995, 117, 8488.
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 656
-
-
Myers, A.G.1
Gleason, J.L.2
Yoon, T.3
Kung, D.W.4
-
19
-
-
0029126361
-
-
For the specific case of the alkylation of pseudoephedrine glycinamide and its application to the preparation of highly enantiomerically enriched α-amino acids, see: (a) Myers, A. G.; Gleason, J. L.; Yoon, T.; Kung, D. W. J. Am. Chem. Soc. 1997, 119, 656. (b) Myers, A. G.; Gleason, J. L.; Yoon, T. J. Am. Chem. Soc. 1995, 117, 8488.
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 8488
-
-
Myers, A.G.1
Gleason, J.L.2
Yoon, T.3
-
20
-
-
0028085699
-
-
For the use of the acyclic amino alcohol phenylglycinol as a chiral auxiliary, see: (a) Micouin, L.; Schanen, V.; Riche, C.; Chiaroni, A.; Quirion, J-C.; Husson, H-P. Tetrahedron Lett. 1994, 35, 7223. (b) Micouin, L.; Jullian, V.; Quirion, J-C.; Husson, H-P. Tetrahedron: Asymmetry 1996, 7, 2839.
-
(1994)
Tetrahedron Lett.
, vol.35
, pp. 7223
-
-
Micouin, L.1
Schanen, V.2
Riche, C.3
Chiaroni, A.4
Quirion, J.-C.5
Husson, H.-P.6
-
21
-
-
0030271820
-
-
For the use of the acyclic amino alcohol phenylglycinol as a chiral auxiliary, see: (a) Micouin, L.; Schanen, V.; Riche, C.; Chiaroni, A.; Quirion, J-C.; Husson, H-P. Tetrahedron Lett. 1994, 35, 7223. (b) Micouin, L.; Jullian, V.; Quirion, J-C.; Husson, H-P. Tetrahedron: Asymmetry 1996, 7, 2839.
-
(1996)
Tetrahedron: Asymmetry
, vol.7
, pp. 2839
-
-
Micouin, L.1
Jullian, V.2
Quirion, J.-C.3
Husson, H.-P.4
-
26
-
-
0029031843
-
-
Myers, A. G.; Yoon, T.; Gleason, J. L. Tetrahedron Lett. 1995, 36, 4555.
-
(1995)
Tetrahedron Lett.
, vol.36
, pp. 4555
-
-
Myers, A.G.1
Yoon, T.2
Gleason, J.L.3
-
27
-
-
1842340816
-
-
This stands in contrast to the alkylation of the enolate derived from pseudoephedrine glycinamide (ref 9), where the selectivity of the alkylation with ethyl iodide was diminished in the absence of lithium chloride (97% de with lithium chloride versus 82% de without lithium chloride)
-
This stands in contrast to the alkylation of the enolate derived from pseudoephedrine glycinamide (ref 9), where the selectivity of the alkylation with ethyl iodide was diminished in the absence of lithium chloride (97% de with lithium chloride versus 82% de without lithium chloride).
-
-
-
-
28
-
-
0026026733
-
-
(a) Seebach, D.; Bossler, H.; Gründler, H.; Shoda, S.-I. Helv. Chim. Acta 1991, 74, 197.
-
(1991)
Helv. Chim. Acta
, vol.74
, pp. 197
-
-
Seebach, D.1
Bossler, H.2
Gründler, H.3
Shoda, S.-I.4
-
29
-
-
0027397434
-
-
(b) Miller, S. A.; Griffiths, S. L.; Seebach, D. Helv. Chim. Acta 1993, 76, 563.
-
(1993)
Helv. Chim. Acta
, vol.76
, pp. 563
-
-
Miller, S.A.1
Griffiths, S.L.2
Seebach, D.3
-
31
-
-
1842398962
-
-
Imide enolates, by contrast, are essentially inert toward these same substrates (ref 6b)
-
(a) Imide enolates, by contrast, are essentially inert toward these same substrates (ref 6b).
-
-
-
-
32
-
-
1842309179
-
-
The presence of lithium chloride in the reaction medium did not alter this outcome. Thus, the lithium enolate derived from the imide N-propionylbenzyloxazolidinone was found not to react with n-butyl iodide at 0 °C in the presence of 10 equiv of lithium chloride after 16 h (Myers, A. G.; Chen, H., California Institute of Technology, unpublished results)
-
(b) The presence of lithium chloride in the reaction medium did not alter this outcome. Thus, the lithium enolate derived from the imide N-propionylbenzyloxazolidinone was found not to react with n-butyl iodide at 0 °C in the presence of 10 equiv of lithium chloride after 16 h (Myers, A. G.; Chen, H., California Institute of Technology, unpublished results).
-
-
-
-
33
-
-
1842315802
-
-
Fewer equivalents of the enolate can be employed. For example, alkylation of 1.3 equiv of the enolate derived from 1 with the iodide 78 at 23 °C for 20.5 h afforded the 1,3-syn alkylation product 35 in 90% yield with 99:1 selectivity (cf. entry 4, Table 3)
-
Fewer equivalents of the enolate can be employed. For example, alkylation of 1.3 equiv of the enolate derived from 1 with the iodide 78 at 23 °C for 20.5 h afforded the 1,3-syn alkylation product 35 in 90% yield with 99:1 selectivity (cf. entry 4, Table 3).
-
-
-
-
34
-
-
0003081972
-
-
Myers, A. G.; Yang, B. H.; Chen, H.; Kopecky, D. J. Synlett 1997, 5, 457.
-
(1997)
Synlett
, vol.5
, pp. 457
-
-
Myers, A.G.1
Yang, B.H.2
Chen, H.3
Kopecky, D.J.4
-
35
-
-
0343168327
-
-
The iodide 78 was prepared by iodination of the corresponding alcohol, prepared in ≥99% de and 90% yield by LAB reduction (see text) of the alkylation product 12. For iodination of alcohols, see: (a) Garegg, P. J.; Samuelsson, B. J. Chem. Soc., Perkin Trans. 1 1980, 2866. (b) Lange, G. L.; Gottardo, C. Synth. Commun. 1990, 20, 1473.
-
(1980)
J. Chem. Soc., Perkin Trans. 1
, pp. 2866
-
-
Garegg, P.J.1
Samuelsson, B.2
-
36
-
-
68949147023
-
-
The iodide 78 was prepared by iodination of the corresponding alcohol, prepared in ≥99% de and 90% yield by LAB reduction (see text) of the alkylation product 12. For iodination of alcohols, see: (a) Garegg, P. J.; Samuelsson, B. J. Chem. Soc., Perkin Trans. 1 1980, 2866. (b) Lange, G. L.; Gottardo, C. Synth. Commun. 1990, 20, 1473.
-
(1990)
Synth. Commun.
, vol.20
, pp. 1473
-
-
Lange, G.L.1
Gottardo, C.2
-
37
-
-
1842344629
-
-
In these and all subsequent alkylation reactions, care was taken to avoid adventitious diastereomeric enrichment upon purification and de values reported reflect those of the crude reaction mixtures
-
In these and all subsequent alkylation reactions, care was taken to avoid adventitious diastereomeric enrichment upon purification and de values reported reflect those of the crude reaction mixtures.
-
-
-
-
46
-
-
0003832495
-
-
Wiley-Interscience: New York
-
(c) Zabicky, J., Ed. The Chemistry of Amides; Wiley-Interscience: New York, 1970; pp 795-801.
-
(1970)
The Chemistry of Amides
, pp. 795-801
-
-
Zabicky, J.1
-
51
-
-
0343998191
-
-
Brown, H. C.; Krishnamurthy, S.; Yoon, N. M. J. Org. Chem. 1976, 41, 1778.
-
(1976)
J. Org. Chem.
, vol.41
, pp. 1778
-
-
Brown, H.C.1
Krishnamurthy, S.2
Yoon, N.M.3
-
52
-
-
0000452896
-
-
Hutchins, R. O.; Learn, K.; El-Telbany, F.; Stercho, Y. P. J. Org. Chem. 1984, 49, 2438.
-
(1984)
J. Org. Chem.
, vol.49
, pp. 2438
-
-
Hutchins, R.O.1
Learn, K.2
El-Telbany, F.3
Stercho, Y.P.4
-
53
-
-
0026749777
-
-
(a) Fisher, G. B.; Harrison, J.; Fuller, J. C.; Goralski, C. T.; Singaram, B. Tetrahedron Lett. 1992, 33, 4533.
-
(1992)
Tetrahedron Lett.
, vol.33
, pp. 4533
-
-
Fisher, G.B.1
Harrison, J.2
Fuller, J.C.3
Goralski, C.T.4
Singaram, B.5
-
54
-
-
0027410788
-
-
(b) Fisher, G. B.; Fuller, J. C.; Harrison, J.; Goralski, C. T.; Singaram, B. Tetrahedron Lett. 1993, 34, 1091.
-
(1993)
Tetrahedron Lett.
, vol.34
, pp. 1091
-
-
Fisher, G.B.1
Fuller, J.C.2
Harrison, J.3
Goralski, C.T.4
Singaram, B.5
-
55
-
-
33751158369
-
-
(c) Fisher, G. B.; Fuller, J. C.; Harrison, J.; Alvarez, S. G.; Burkhardt, E. R.; Goralski, C. T.; Singaram, B. J. Org. Chem. 1994, 59, 6378.
-
(1994)
J. Org. Chem.
, vol.59
, pp. 6378
-
-
Fisher, G.B.1
Fuller, J.C.2
Harrison, J.3
Alvarez, S.G.4
Burkhardt, E.R.5
Goralski, C.T.6
Singaram, B.7
-
56
-
-
0029989131
-
-
Myers, A. G.; Yang, B. H.; Kopecky, D. J. Tetrahedron Lett. 1996, 37, 3623.
-
(1996)
Tetrahedron Lett.
, vol.37
, pp. 3623
-
-
Myers, A.G.1
Yang, B.H.2
Kopecky, D.J.3
-
60
-
-
1842270684
-
-
In all cases, the pseudoephedrine aminal was found to be a single diastereomer, of undetermined stereochemistry
-
In all cases, the pseudoephedrine aminal was found to be a single diastereomer, of undetermined stereochemistry.
-
-
-
-
64
-
-
0001161387
-
-
Askin, D.; Volante, R. P.; Ryan, K. M.; Reamer, R. A.; Shinkai, I. Tetrahedron Lett. 1988, 29, 4245.
-
(1988)
Tetrahedron Lett.
, vol.29
, pp. 4245
-
-
Askin, D.1
Volante, R.P.2
Ryan, K.M.3
Reamer, R.A.4
Shinkai, I.5
-
67
-
-
0002894381
-
-
(b) Larcheveque, M.; Ignatova, E.; Cuvigny, T. J. Organomet. Chem. 1979, 177, 5.
-
(1979)
J. Organomet. Chem.
, vol.177
, pp. 5
-
-
Larcheveque, M.1
Ignatova, E.2
Cuvigny, T.3
-
68
-
-
1842313963
-
-
For example, enolization of ephedrine propionamide (1 equiv) with LDA (2.1 equiv) in the presence of lithium chloride (6 equiv), as described for pseudoephedrine propionamide, and addition of n-butyl iodide at 0 °C afforded a diastereomeric mixture of alkylation products (70% de, configuration not determined) in 90% yield after purification by flash column chromatography
-
For example, enolization of ephedrine propionamide (1 equiv) with LDA (2.1 equiv) in the presence of lithium chloride (6 equiv), as described for pseudoephedrine propionamide, and addition of n-butyl iodide at 0 °C afforded a diastereomeric mixture of alkylation products (70% de, configuration not determined) in 90% yield after purification by flash column chromatography.
-
-
-
-
69
-
-
0002714675
-
-
Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
-
(1978)
J. Org. Chem.
, vol.43
, pp. 2923
-
-
Still, W.C.1
Kahn, M.2
Mitra, A.3
-
71
-
-
0000387189
-
-
Collect, Wiley: New York
-
Connor, D. S.; Klein, G. W.; Taylor, G. N.; Boeckman, R. K., Jr.; Medwid, J. B. Organic Syntheses; Collect. Vol. VI, Wiley: New York, 1988; p 101.
-
(1988)
Organic Syntheses
, vol.6
, pp. 101
-
-
Connor, D.S.1
Klein, G.W.2
Taylor, G.N.3
Boeckman Jr., R.K.4
Medwid, J.B.5
-
73
-
-
0010640653
-
-
Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543.
-
(1969)
J. Org. Chem.
, vol.34
, pp. 2543
-
-
Dale, J.A.1
Dull, D.L.2
Mosher, H.S.3
-
75
-
-
1842282415
-
-
In each case, an authentic sample of the minor diastereomeric alkylation product was prepared for comparative analysis (chiral capillary GC analysis of the corresponding trimethylsilyl ether or acetate ester). In the case of amides 16, 21, 26, 27, and 29-31, diastereomeric mixtures of α-epimers were obtained by epimerization with LDA (5 equiv) or lithium 2,2,6,6-tetramethylpiperidide (5 equiv) in THF for 5 h at 23 °C followed by quenching with aqueous ammonium chloride solution. Amide 28 was epimerized by stirring with lithium chloride (5 equiv) in N,N-dimethylformamide at 23 °C for 12 h. Each of the remaining alkylation products in Tables 2 and 3 was epimerized by stirring the substrate with trifluoroacetic acid (10 equiv) in THF at reflux for 1 h (effecting N → O acyl transfer as well as α-epimerization), followed by neutralization with aqueous sodium bicarbonate solution at 23 °C for 24 h (causing O → N acyl transfer)
-
In each case, an authentic sample of the minor diastereomeric alkylation product was prepared for comparative analysis (chiral capillary GC analysis of the corresponding trimethylsilyl ether or acetate ester). In the case of amides 16, 21, 26, 27, and 29-31, diastereomeric mixtures of α-epimers were obtained by epimerization with LDA (5 equiv) or lithium 2,2,6,6-tetramethylpiperidide (5 equiv) in THF for 5 h at 23 °C followed by quenching with aqueous ammonium chloride solution. Amide 28 was epimerized by stirring with lithium chloride (5 equiv) in N,N-dimethylformamide at 23 °C for 12 h. Each of the remaining alkylation products in Tables 2 and 3 was epimerized by stirring the substrate with trifluoroacetic acid (10 equiv) in THF at reflux for 1 h (effecting N → O acyl transfer as well as α-epimerization), followed by neutralization with aqueous sodium bicarbonate solution at 23 °C for 24 h (causing O → N acyl transfer).
-
-
-
-
76
-
-
1842398965
-
-
In each case, an authentic sample of the minor diastereomeric (R)-α-methylbenzyl amide was prepared for comparative analysis
-
In each case, an authentic sample of the minor diastereomeric (R)-α-methylbenzyl amide was prepared for comparative analysis.
-
-
-
-
77
-
-
1842381440
-
-
Acetate esters of the diastereomeric alcohol pairs 68 and 69, 70 and 71, 72 and 73, 74 and 75, and 76 and 77 were separated with baseline resolution when assayed by chiral capillary GC analysis
-
Acetate esters of the diastereomeric alcohol pairs 68 and 69, 70 and 71, 72 and 73, 74 and 75, and 76 and 77 were separated with baseline resolution when assayed by chiral capillary GC analysis.
-
-
-
-
79
-
-
1842346589
-
-
Both (R)- and (S)-Mosher ester derivatives were prepared for comparative analysis
-
Both (R)-and (S)-Mosher ester derivatives were prepared for comparative analysis.
-
-
-
|