메뉴 건너뛰기




Volumn 119, Issue 40, 1997, Pages 9331-9335

Dipole formation and solvent electrostriction in subtilisin catalysis

Author keywords

[No Author keywords available]

Indexed keywords

HEXANE; SOLVENT; SUBTILISIN;

EID: 0030778537     PISSN: 00027863     EISSN: None     Source Type: Journal    
DOI: 10.1021/ja9713892     Document Type: Article
Times cited : (33)

References (46)
  • 19
  • 24
    • 0024278258 scopus 로고
    • This estimate, while only approximate, is comparable to the value reported previously for a similar transesterification reaction catalyzed by subtilisin in octane (Zaks, A.; Klibanov, A. M. J. Biol. Chem. 1988, 263, 3194).
    • (1988) J. Biol. Chem. , vol.263 , pp. 3194
    • Zaks, A.1    Klibanov, A.M.2
  • 28
    • 0001435112 scopus 로고
    • We did not compare ester hydrolysis in aqueous solution to transesterification in organic solvents for two primary reasons. First, the two types of reactions have different rate-limiting steps. The rate-controlling step for subtilisin-catalyzed ester hydrolysis is deacylation (Bonneau, P. R.; Graycar, T. P.; Estell, D. A.; Jones, B. J. J. Am. Chem. Soc. 1991, 113, 1026), whereas the rate-controlling step for transesterification in organic solvents is acylation (Wangikar, P. P.; Graycar, T. P.; Estell, D. A.; Clark, D. S.; Dordick, J. S. J. Am. Chem. Soc. 1993, 115, 12231. Chatterjee, S.; Russell, A. J. Biotechnol. Bioeng. 1992, 40, 1069.) Moreover, water differs in its mechanism of electrostatic solvation compared with more apolar solvents (Whalley, E. J. Chem. Phys., 1963, 38, 1400.) and commonly engages in nonelectrostrictive interactions. These effects often cause deviations from the Kirkwood model for electrostriction (Isaacs, N. Liquid Phase High Pressure Chemistry; John Wiley & Sons: Chichester, 1981 pp 181-343. Hamann, S. D. Mod. Asp. Electochem. 1972, 9, 47.).
    • (1991) J. Am. Chem. Soc. , vol.113 , pp. 1026
    • Bonneau, P.R.1    Graycar, T.P.2    Estell, D.A.3    Jones, B.J.4
  • 29
    • 0027818723 scopus 로고
    • We did not compare ester hydrolysis in aqueous solution to transesterification in organic solvents for two primary reasons. First, the two types of reactions have different rate-limiting steps. The rate-controlling step for subtilisin-catalyzed ester hydrolysis is deacylation (Bonneau, P. R.; Graycar, T. P.; Estell, D. A.; Jones, B. J. J. Am. Chem. Soc. 1991, 113, 1026), whereas the rate-controlling step for transesterification in organic solvents is acylation (Wangikar, P. P.; Graycar, T. P.; Estell, D. A.; Clark, D. S.; Dordick, J. S. J. Am. Chem. Soc. 1993, 115, 12231. Chatterjee, S.; Russell, A. J. Biotechnol. Bioeng. 1992, 40, 1069.) Moreover, water differs in its mechanism of electrostatic solvation compared with more apolar solvents (Whalley, E. J. Chem. Phys., 1963, 38, 1400.) and commonly engages in nonelectrostrictive interactions. These effects often cause deviations from the Kirkwood model for electrostriction (Isaacs, N. Liquid Phase High Pressure Chemistry; John Wiley & Sons: Chichester, 1981 pp 181-343. Hamann, S. D. Mod. Asp. Electochem. 1972, 9, 47.).
    • (1993) J. Am. Chem. Soc. , vol.115 , pp. 12231
    • Wangikar, P.P.1    Graycar, T.P.2    Estell, D.A.3    Clark, D.S.4    Dordick, J.S.5
  • 30
    • 0026955780 scopus 로고
    • We did not compare ester hydrolysis in aqueous solution to transesterification in organic solvents for two primary reasons. First, the two types of reactions have different rate-limiting steps. The rate-controlling step for subtilisin-catalyzed ester hydrolysis is deacylation (Bonneau, P. R.; Graycar, T. P.; Estell, D. A.; Jones, B. J. J. Am. Chem. Soc. 1991, 113, 1026), whereas the rate-controlling step for transesterification in organic solvents is acylation (Wangikar, P. P.; Graycar, T. P.; Estell, D. A.; Clark, D. S.; Dordick, J. S. J. Am. Chem. Soc. 1993, 115, 12231. Chatterjee, S.; Russell, A. J. Biotechnol. Bioeng. 1992, 40, 1069.) Moreover, water differs in its mechanism of electrostatic solvation compared with more apolar solvents (Whalley, E. J. Chem. Phys., 1963, 38, 1400.) and commonly engages in nonelectrostrictive interactions. These effects often cause deviations from the Kirkwood model for electrostriction (Isaacs, N. Liquid Phase High Pressure Chemistry; John Wiley & Sons: Chichester, 1981 pp 181-343. Hamann, S. D. Mod. Asp. Electochem. 1972, 9, 47.).
    • (1992) Biotechnol. Bioeng. , vol.40 , pp. 1069
    • Chatterjee, S.1    Russell, A.J.2
  • 31
    • 51149203218 scopus 로고
    • We did not compare ester hydrolysis in aqueous solution to transesterification in organic solvents for two primary reasons. First, the two types of reactions have different rate-limiting steps. The rate-controlling step for subtilisin-catalyzed ester hydrolysis is deacylation (Bonneau, P. R.; Graycar, T. P.; Estell, D. A.; Jones, B. J. J. Am. Chem. Soc. 1991, 113, 1026), whereas the rate-controlling step for transesterification in organic solvents is acylation (Wangikar, P. P.; Graycar, T. P.; Estell, D. A.; Clark, D. S.; Dordick, J. S. J. Am. Chem. Soc. 1993, 115, 12231. Chatterjee, S.; Russell, A. J. Biotechnol. Bioeng. 1992, 40, 1069.) Moreover, water differs in its mechanism of electrostatic solvation compared with more apolar solvents (Whalley, E. J. Chem. Phys., 1963, 38, 1400.) and commonly engages in nonelectrostrictive interactions. These effects often cause deviations from the Kirkwood model for electrostriction (Isaacs, N. Liquid Phase High Pressure Chemistry; John Wiley & Sons: Chichester, 1981 pp 181-343. Hamann, S. D. Mod. Asp. Electochem. 1972, 9, 47.).
    • (1963) J. Chem. Phys. , vol.38 , pp. 1400
    • Whalley, E.1
  • 32
    • 0003577552 scopus 로고
    • John Wiley & Sons: Chichester
    • We did not compare ester hydrolysis in aqueous solution to transesterification in organic solvents for two primary reasons. First, the two types of reactions have different rate-limiting steps. The rate-controlling step for subtilisin-catalyzed ester hydrolysis is deacylation (Bonneau, P. R.; Graycar, T. P.; Estell, D. A.; Jones, B. J. J. Am. Chem. Soc. 1991, 113, 1026), whereas the rate-controlling step for transesterification in organic solvents is acylation (Wangikar, P. P.; Graycar, T. P.; Estell, D. A.; Clark, D. S.; Dordick, J. S. J. Am. Chem. Soc. 1993, 115, 12231. Chatterjee, S.; Russell, A. J. Biotechnol. Bioeng. 1992, 40, 1069.) Moreover, water differs in its mechanism of electrostatic solvation compared with more apolar solvents (Whalley, E. J. Chem. Phys., 1963, 38, 1400.) and commonly engages in nonelectrostrictive interactions. These effects often cause deviations from the Kirkwood model for electrostriction (Isaacs, N. Liquid Phase High Pressure Chemistry; John Wiley & Sons: Chichester, 1981 pp 181-343. Hamann, S. D. Mod. Asp. Electochem. 1972, 9, 47.).
    • (1981) Liquid Phase High Pressure Chemistry , pp. 181-343
    • Isaacs, N.1
  • 33
    • 0001833678 scopus 로고
    • We did not compare ester hydrolysis in aqueous solution to transesterification in organic solvents for two primary reasons. First, the two types of reactions have different rate-limiting steps. The rate-controlling step for subtilisin-catalyzed ester hydrolysis is deacylation (Bonneau, P. R.; Graycar, T. P.; Estell, D. A.; Jones, B. J. J. Am. Chem. Soc. 1991, 113, 1026), whereas the rate-controlling step for transesterification in organic solvents is acylation (Wangikar, P. P.; Graycar, T. P.; Estell, D. A.; Clark, D. S.; Dordick, J. S. J. Am. Chem. Soc. 1993, 115, 12231. Chatterjee, S.; Russell, A. J. Biotechnol. Bioeng. 1992, 40, 1069.) Moreover, water differs in its mechanism of electrostatic solvation compared with more apolar solvents (Whalley, E. J. Chem. Phys., 1963, 38, 1400.) and commonly engages in nonelectrostrictive interactions. These effects often cause deviations from the Kirkwood model for electrostriction (Isaacs, N. Liquid Phase High Pressure Chemistry; John Wiley & Sons: Chichester, 1981 pp 181-343. Hamann, S. D. Mod. Asp. Electochem. 1972, 9, 47.).
    • (1972) Mod. Asp. Electochem. , vol.9 , pp. 47
    • Hamann, S.D.1
  • 43
    • 9844245738 scopus 로고    scopus 로고
    • note
    • Essential data on the effect of pressure on the dielectric constant (∂ε/∂P) were available for a limited number of solvents; hence, more solvents were included for the modeling in Figure 4 than in Figure 2.
  • 45
    • 9844249538 scopus 로고    scopus 로고
    • note
    • δ2 atm of asparagine is ca. 3.5 Å.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.