-
1
-
-
33845184042
-
-
Burke, P.; Griffin, R. G.; Klibanov, A. M. J. Am. Chem. Soc. 1989, 111, 8290.
-
(1989)
J. Am. Chem. Soc.
, vol.111
, pp. 8290
-
-
Burke, P.1
Griffin, R.G.2
Klibanov, A.M.3
-
2
-
-
0026701686
-
-
Burke, P. A.; Griffin, R. G.; Klibanov, A. M. J. Biol. Chem. 1992, 267, 20057.
-
(1992)
J. Biol. Chem.
, vol.267
, pp. 20057
-
-
Burke, P.A.1
Griffin, R.G.2
Klibanov, A.M.3
-
3
-
-
0026517739
-
-
Affleck, R.; Xu, Z.-F.; Suzawa, V.; Focht, K.; Clark, D. S.; Dordick, J. S. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 1100.
-
(1992)
Proc. Natl. Acad. Sci. U.S.A.
, vol.89
, pp. 1100
-
-
Affleck, R.1
Xu, Z.-F.2
Suzawa, V.3
Focht, K.4
Clark, D.S.5
Dordick, J.S.6
-
5
-
-
0028243728
-
-
Yennawar, N. J.; Yennawar, H. P.; Farber, G. K. Biochemistry 1994, 33, 7326.
-
(1994)
Biochemistry
, vol.33
, pp. 7326
-
-
Yennawar, N.J.1
Yennawar, H.P.2
Farber, G.K.3
-
6
-
-
0027321564
-
-
Fitzpatrick, P. A.; Steinmetz, A. C. U.; Ringe, D.; Klibanov, A. M. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 8653.
-
(1993)
Proc. Natl. Acad. Sci. U.S.A.
, vol.90
, pp. 8653
-
-
Fitzpatrick, P.A.1
Steinmetz, A.C.U.2
Ringe, D.3
Klibanov, A.M.4
-
7
-
-
0028304966
-
-
Fitzpatrick, P. A.; Rings, D.; Klibanov, A. M. Biochem. Biophys. Res. Comm. 1994, 198, 675.
-
(1994)
Biochem. Biophys. Res. Comm.
, vol.198
, pp. 675
-
-
Fitzpatrick, P.A.1
Rings, D.2
Klibanov, A.M.3
-
8
-
-
0023764550
-
-
Rodgers, K. K.; Pochapsky, T. C.; Sligar, S. G. Science 1988, 240, 1657.
-
(1988)
Science
, vol.240
, pp. 1657
-
-
Rodgers, K.K.1
Pochapsky, T.C.2
Sligar, S.G.3
-
10
-
-
0019874678
-
-
Chryssomallis, G. S.; Torgerson, P. M.; Drickamer, H. G.; Weber, G. Biochemistry 1982, 20, 3955.
-
(1982)
Biochemistry
, vol.20
, pp. 3955
-
-
Chryssomallis, G.S.1
Torgerson, P.M.2
Drickamer, H.G.3
Weber, G.4
-
11
-
-
33845184910
-
-
van Eldik, R.; Asano, T.; le Noble, W. J. Chem. Rev. 1989, 89, 549.
-
(1989)
Chem. Rev.
, vol.89
, pp. 549
-
-
Van Eldik, R.1
Asano, T.2
Le Noble, W.J.3
-
15
-
-
9844254909
-
-
Hartmann, H.; Brauer, H. D.; Kelm, H.; Rinck, G. Z. Physik Chem. 1968, 61, 53.
-
(1968)
Z. Physik Chem.
, vol.61
, pp. 53
-
-
Hartmann, H.1
Brauer, H.D.2
Kelm, H.3
Rinck, G.4
-
17
-
-
9844250612
-
-
Kotowsky, R.; Palmer, D. A.; Kelm, H. Inorg. Chem. 1970, 18, 2555.
-
(1970)
Inorg. Chem.
, vol.18
, pp. 2555
-
-
Kotowsky, R.1
Palmer, D.A.2
Kelm, H.3
-
19
-
-
34250928962
-
-
Born, M. Z. Phys. 1920, 1, 45.
-
(1920)
Z. Phys.
, vol.1
, pp. 45
-
-
Born, M.1
-
23
-
-
9844233583
-
-
Roux, B.; Yu, H.-A.; Karplus, M. J. Phys. Chem. 1990, 94, 468
-
(1990)
J. Phys. Chem.
, vol.94
, pp. 468
-
-
Roux, B.1
Yu, H.-A.2
Karplus, M.3
-
24
-
-
0024278258
-
-
This estimate, while only approximate, is comparable to the value reported previously for a similar transesterification reaction catalyzed by subtilisin in octane (Zaks, A.; Klibanov, A. M. J. Biol. Chem. 1988, 263, 3194).
-
(1988)
J. Biol. Chem.
, vol.263
, pp. 3194
-
-
Zaks, A.1
Klibanov, A.M.2
-
25
-
-
0028029812
-
-
Desai, U. R.; Osterhout, J. J.; Klibanov, A. M. J. Am. Chem. Soc. 1994, 116, 9420.
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 9420
-
-
Desai, U.R.1
Osterhout, J.J.2
Klibanov, A.M.3
-
28
-
-
0001435112
-
-
We did not compare ester hydrolysis in aqueous solution to transesterification in organic solvents for two primary reasons. First, the two types of reactions have different rate-limiting steps. The rate-controlling step for subtilisin-catalyzed ester hydrolysis is deacylation (Bonneau, P. R.; Graycar, T. P.; Estell, D. A.; Jones, B. J. J. Am. Chem. Soc. 1991, 113, 1026), whereas the rate-controlling step for transesterification in organic solvents is acylation (Wangikar, P. P.; Graycar, T. P.; Estell, D. A.; Clark, D. S.; Dordick, J. S. J. Am. Chem. Soc. 1993, 115, 12231. Chatterjee, S.; Russell, A. J. Biotechnol. Bioeng. 1992, 40, 1069.) Moreover, water differs in its mechanism of electrostatic solvation compared with more apolar solvents (Whalley, E. J. Chem. Phys., 1963, 38, 1400.) and commonly engages in nonelectrostrictive interactions. These effects often cause deviations from the Kirkwood model for electrostriction (Isaacs, N. Liquid Phase High Pressure Chemistry; John Wiley & Sons: Chichester, 1981 pp 181-343. Hamann, S. D. Mod. Asp. Electochem. 1972, 9, 47.).
-
(1991)
J. Am. Chem. Soc.
, vol.113
, pp. 1026
-
-
Bonneau, P.R.1
Graycar, T.P.2
Estell, D.A.3
Jones, B.J.4
-
29
-
-
0027818723
-
-
We did not compare ester hydrolysis in aqueous solution to transesterification in organic solvents for two primary reasons. First, the two types of reactions have different rate-limiting steps. The rate-controlling step for subtilisin-catalyzed ester hydrolysis is deacylation (Bonneau, P. R.; Graycar, T. P.; Estell, D. A.; Jones, B. J. J. Am. Chem. Soc. 1991, 113, 1026), whereas the rate-controlling step for transesterification in organic solvents is acylation (Wangikar, P. P.; Graycar, T. P.; Estell, D. A.; Clark, D. S.; Dordick, J. S. J. Am. Chem. Soc. 1993, 115, 12231. Chatterjee, S.; Russell, A. J. Biotechnol. Bioeng. 1992, 40, 1069.) Moreover, water differs in its mechanism of electrostatic solvation compared with more apolar solvents (Whalley, E. J. Chem. Phys., 1963, 38, 1400.) and commonly engages in nonelectrostrictive interactions. These effects often cause deviations from the Kirkwood model for electrostriction (Isaacs, N. Liquid Phase High Pressure Chemistry; John Wiley & Sons: Chichester, 1981 pp 181-343. Hamann, S. D. Mod. Asp. Electochem. 1972, 9, 47.).
-
(1993)
J. Am. Chem. Soc.
, vol.115
, pp. 12231
-
-
Wangikar, P.P.1
Graycar, T.P.2
Estell, D.A.3
Clark, D.S.4
Dordick, J.S.5
-
30
-
-
0026955780
-
-
We did not compare ester hydrolysis in aqueous solution to transesterification in organic solvents for two primary reasons. First, the two types of reactions have different rate-limiting steps. The rate-controlling step for subtilisin-catalyzed ester hydrolysis is deacylation (Bonneau, P. R.; Graycar, T. P.; Estell, D. A.; Jones, B. J. J. Am. Chem. Soc. 1991, 113, 1026), whereas the rate-controlling step for transesterification in organic solvents is acylation (Wangikar, P. P.; Graycar, T. P.; Estell, D. A.; Clark, D. S.; Dordick, J. S. J. Am. Chem. Soc. 1993, 115, 12231. Chatterjee, S.; Russell, A. J. Biotechnol. Bioeng. 1992, 40, 1069.) Moreover, water differs in its mechanism of electrostatic solvation compared with more apolar solvents (Whalley, E. J. Chem. Phys., 1963, 38, 1400.) and commonly engages in nonelectrostrictive interactions. These effects often cause deviations from the Kirkwood model for electrostriction (Isaacs, N. Liquid Phase High Pressure Chemistry; John Wiley & Sons: Chichester, 1981 pp 181-343. Hamann, S. D. Mod. Asp. Electochem. 1972, 9, 47.).
-
(1992)
Biotechnol. Bioeng.
, vol.40
, pp. 1069
-
-
Chatterjee, S.1
Russell, A.J.2
-
31
-
-
51149203218
-
-
We did not compare ester hydrolysis in aqueous solution to transesterification in organic solvents for two primary reasons. First, the two types of reactions have different rate-limiting steps. The rate-controlling step for subtilisin-catalyzed ester hydrolysis is deacylation (Bonneau, P. R.; Graycar, T. P.; Estell, D. A.; Jones, B. J. J. Am. Chem. Soc. 1991, 113, 1026), whereas the rate-controlling step for transesterification in organic solvents is acylation (Wangikar, P. P.; Graycar, T. P.; Estell, D. A.; Clark, D. S.; Dordick, J. S. J. Am. Chem. Soc. 1993, 115, 12231. Chatterjee, S.; Russell, A. J. Biotechnol. Bioeng. 1992, 40, 1069.) Moreover, water differs in its mechanism of electrostatic solvation compared with more apolar solvents (Whalley, E. J. Chem. Phys., 1963, 38, 1400.) and commonly engages in nonelectrostrictive interactions. These effects often cause deviations from the Kirkwood model for electrostriction (Isaacs, N. Liquid Phase High Pressure Chemistry; John Wiley & Sons: Chichester, 1981 pp 181-343. Hamann, S. D. Mod. Asp. Electochem. 1972, 9, 47.).
-
(1963)
J. Chem. Phys.
, vol.38
, pp. 1400
-
-
Whalley, E.1
-
32
-
-
0003577552
-
-
John Wiley & Sons: Chichester
-
We did not compare ester hydrolysis in aqueous solution to transesterification in organic solvents for two primary reasons. First, the two types of reactions have different rate-limiting steps. The rate-controlling step for subtilisin-catalyzed ester hydrolysis is deacylation (Bonneau, P. R.; Graycar, T. P.; Estell, D. A.; Jones, B. J. J. Am. Chem. Soc. 1991, 113, 1026), whereas the rate-controlling step for transesterification in organic solvents is acylation (Wangikar, P. P.; Graycar, T. P.; Estell, D. A.; Clark, D. S.; Dordick, J. S. J. Am. Chem. Soc. 1993, 115, 12231. Chatterjee, S.; Russell, A. J. Biotechnol. Bioeng. 1992, 40, 1069.) Moreover, water differs in its mechanism of electrostatic solvation compared with more apolar solvents (Whalley, E. J. Chem. Phys., 1963, 38, 1400.) and commonly engages in nonelectrostrictive interactions. These effects often cause deviations from the Kirkwood model for electrostriction (Isaacs, N. Liquid Phase High Pressure Chemistry; John Wiley & Sons: Chichester, 1981 pp 181-343. Hamann, S. D. Mod. Asp. Electochem. 1972, 9, 47.).
-
(1981)
Liquid Phase High Pressure Chemistry
, pp. 181-343
-
-
Isaacs, N.1
-
33
-
-
0001833678
-
-
We did not compare ester hydrolysis in aqueous solution to transesterification in organic solvents for two primary reasons. First, the two types of reactions have different rate-limiting steps. The rate-controlling step for subtilisin-catalyzed ester hydrolysis is deacylation (Bonneau, P. R.; Graycar, T. P.; Estell, D. A.; Jones, B. J. J. Am. Chem. Soc. 1991, 113, 1026), whereas the rate-controlling step for transesterification in organic solvents is acylation (Wangikar, P. P.; Graycar, T. P.; Estell, D. A.; Clark, D. S.; Dordick, J. S. J. Am. Chem. Soc. 1993, 115, 12231. Chatterjee, S.; Russell, A. J. Biotechnol. Bioeng. 1992, 40, 1069.) Moreover, water differs in its mechanism of electrostatic solvation compared with more apolar solvents (Whalley, E. J. Chem. Phys., 1963, 38, 1400.) and commonly engages in nonelectrostrictive interactions. These effects often cause deviations from the Kirkwood model for electrostriction (Isaacs, N. Liquid Phase High Pressure Chemistry; John Wiley & Sons: Chichester, 1981 pp 181-343. Hamann, S. D. Mod. Asp. Electochem. 1972, 9, 47.).
-
(1972)
Mod. Asp. Electochem.
, vol.9
, pp. 47
-
-
Hamann, S.D.1
-
37
-
-
0000535896
-
-
Skinner, J. F.; Cussler, E. L.; Fuoss, R. M. J. Phys. Chem. 1968, 72, 1057.
-
(1968)
J. Phys. Chem.
, vol.72
, pp. 1057
-
-
Skinner, J.F.1
Cussler, E.L.2
Fuoss, R.M.3
-
38
-
-
84988115618
-
-
Clark, M.; Cramer, R. D.; van Opdenbosch, N. J. Comput. Chem. 1989, 10, 982.
-
(1989)
J. Comput. Chem.
, vol.10
, pp. 982
-
-
Clark, M.1
Cramer, R.D.2
Van Opdenbosch, N.3
-
41
-
-
0028100386
-
-
Steinmetz, A. C. U.; Demuth, H.-U.; Ringe, D. Biochemistry 1994, 33, 10535.
-
(1994)
Biochemistry
, vol.33
, pp. 10535
-
-
Steinmetz, A.C.U.1
Demuth, H.-U.2
Ringe, D.3
-
42
-
-
0025045408
-
-
Lamotte-Brassuer, J.; Dive, G.; Dehareng, D.; Ghuysen, J. M. J. Theor. Biol. 1990, 145, 183.
-
(1990)
J. Theor. Biol.
, vol.145
, pp. 183
-
-
Lamotte-Brassuer, J.1
Dive, G.2
Dehareng, D.3
Ghuysen, J.M.4
-
43
-
-
9844245738
-
-
note
-
Essential data on the effect of pressure on the dielectric constant (∂ε/∂P) were available for a limited number of solvents; hence, more solvents were included for the modeling in Figure 4 than in Figure 2.
-
-
-
-
44
-
-
0028401589
-
-
Xu, Z.-F.; Affleck, R; Wangikar, P.; Suzawa, V.; Dordick, J. S.; Clark, D. S. Biotechnol. Bioeng. 1994, 43, 515.
-
(1994)
Biotechnol. Bioeng.
, vol.43
, pp. 515
-
-
Xu, Z.-F.1
Affleck, R.2
Wangikar, P.3
Suzawa, V.4
Dordick, J.S.5
Clark, D.S.6
-
45
-
-
9844249538
-
-
note
-
δ2 atm of asparagine is ca. 3.5 Å.
-
-
-
-
46
-
-
0024278654
-
-
Bott, R.; Ultsch, M.; Kosiakoff, A.; Graycar, T. Katz, B.; Power, S. J. Biol. Chem. 1988, 263, 7895.
-
(1988)
J. Biol. Chem.
, vol.263
, pp. 7895
-
-
Bott, R.1
Ultsch, M.2
Kosiakoff, A.3
Graycar, T.4
Katz, B.5
Power, S.6
|