메뉴 건너뛰기




Volumn 277, Issue 5330, 1997, Pages 1268-1274

The motion and boundary between the Capricorn and Australian plates

Author keywords

[No Author keywords available]

Indexed keywords

ANTARCTIC PLATE; AUSTRALIAN PLATE; DEFORMATION; PLATE BOUNDARIES; PLATE BOUNDARY; PLATE MOTION; SOMALIAN PLATE; TRIPLE JUNCTION; TRIPLE JUNCTIONS;

EID: 0030769904     PISSN: 00368075     EISSN: None     Source Type: Journal    
DOI: 10.1126/science.277.5330.1268     Document Type: Article
Times cited : (168)

References (61)
  • 1
    • 0001493845 scopus 로고
    • J. B. Minster and T. H. Jordan, J. Geophys. Res. 83, 5331 (1978); S. Stein and R. G. Gordon, Earth Planet. Sci. Lett. 69, 401 (1984).
    • (1978) J. Geophys. Res. , vol.83 , pp. 5331
    • Minster, J.B.1    Jordan, T.H.2
  • 8
  • 15
    • 1842263673 scopus 로고    scopus 로고
    • note
    • Herein, a direction of stretching refers to the orientation of the maximum principal axis of stretching. Similarly, a direction of shortening refers to the orientation of the minimum principal axis of stretching, or equivalently, the maximum principal axis of shortening.
  • 17
    • 84874687402 scopus 로고
    • J. R. Curray and D. G. Moore, Geol. Soc. Am. Bull. 82, 563 (1971); S. Eittreim and J. Ewing, J. Geophys. Res. 77, 6413 (1972); D. G. Moore, J. R. Curray, R. W. Raitt, F. J. Emmel, Initial Rep. Deep Sea Drill. Proj. 22, 403 (1974); Y. P. Neprochnov, O. V. Levchenko, L. R. Merklin, V. V. Sedov, Tectonophysics 156, 89 (1988); J. M. Bull, ibid. 184, 213 (1990); J. M. Bull and R. A. Scrutton, Nature 344, 855 (1990); N. Chamot-Rooke, F. Jestin, B. de Voogd, Phèdre Working Group, Geology 21, 1043 (1993).
    • (1971) Geol. Soc. Am. Bull. , vol.82 , pp. 563
    • Curray, J.R.1    Moore, D.G.2
  • 18
    • 84874687402 scopus 로고
    • J. R. Curray and D. G. Moore, Geol. Soc. Am. Bull. 82, 563 (1971); S. Eittreim and J. Ewing, J. Geophys. Res. 77, 6413 (1972); D. G. Moore, J. R. Curray, R. W. Raitt, F. J. Emmel, Initial Rep. Deep Sea Drill. Proj. 22, 403 (1974); Y. P. Neprochnov, O. V. Levchenko, L. R. Merklin, V. V. Sedov, Tectonophysics 156, 89 (1988); J. M. Bull, ibid. 184, 213 (1990); J. M. Bull and R. A. Scrutton, Nature 344, 855 (1990); N. Chamot-Rooke, F. Jestin, B. de Voogd, Phèdre Working Group, Geology 21, 1043 (1993).
    • (1972) J. Geophys. Res. , vol.77 , pp. 6413
    • Eittreim, S.1    Ewing, J.2
  • 19
    • 84874687402 scopus 로고
    • J. R. Curray and D. G. Moore, Geol. Soc. Am. Bull. 82, 563 (1971); S. Eittreim and J. Ewing, J. Geophys. Res. 77, 6413 (1972); D. G. Moore, J. R. Curray, R. W. Raitt, F. J. Emmel, Initial Rep. Deep Sea Drill. Proj. 22, 403 (1974); Y. P. Neprochnov, O. V. Levchenko, L. R. Merklin, V. V. Sedov, Tectonophysics 156, 89 (1988); J. M. Bull, ibid. 184, 213 (1990); J. M. Bull and R. A. Scrutton, Nature 344, 855 (1990); N. Chamot-Rooke, F. Jestin, B. de Voogd, Phèdre Working Group, Geology 21, 1043 (1993).
    • (1974) Initial Rep. Deep Sea Drill. Proj. , vol.22 , pp. 403
    • Moore, D.G.1    Curray, J.R.2    Raitt, R.W.3    Emmel, F.J.4
  • 20
    • 0024252703 scopus 로고
    • J. R. Curray and D. G. Moore, Geol. Soc. Am. Bull. 82, 563 (1971); S. Eittreim and J. Ewing, J. Geophys. Res. 77, 6413 (1972); D. G. Moore, J. R. Curray, R. W. Raitt, F. J. Emmel, Initial Rep. Deep Sea Drill. Proj. 22, 403 (1974); Y. P. Neprochnov, O. V. Levchenko, L. R. Merklin, V. V. Sedov, Tectonophysics 156, 89 (1988); J. M. Bull, ibid. 184, 213 (1990); J. M. Bull and R. A. Scrutton, Nature 344, 855 (1990); N. Chamot-Rooke, F. Jestin, B. de Voogd, Phèdre Working Group, Geology 21, 1043 (1993).
    • (1988) Tectonophysics , vol.156 , pp. 89
    • Neprochnov, Y.P.1    Levchenko, O.V.2    Merklin, L.R.3    Sedov, V.V.4
  • 21
    • 0025625530 scopus 로고
    • J. R. Curray and D. G. Moore, Geol. Soc. Am. Bull. 82, 563 (1971); S. Eittreim and J. Ewing, J. Geophys. Res. 77, 6413 (1972); D. G. Moore, J. R. Curray, R. W. Raitt, F. J. Emmel, Initial Rep. Deep Sea Drill. Proj. 22, 403 (1974); Y. P. Neprochnov, O. V. Levchenko, L. R. Merklin, V. V. Sedov, Tectonophysics 156, 89 (1988); J. M. Bull, ibid. 184, 213 (1990); J. M. Bull and R. A. Scrutton, Nature 344, 855 (1990); N. Chamot-Rooke, F. Jestin, B. de Voogd, Phèdre Working Group, Geology 21, 1043 (1993).
    • (1990) Tectonophysics , vol.184 , pp. 213
    • Bull, J.M.1
  • 22
    • 0025205542 scopus 로고
    • J. R. Curray and D. G. Moore, Geol. Soc. Am. Bull. 82, 563 (1971); S. Eittreim and J. Ewing, J. Geophys. Res. 77, 6413 (1972); D. G. Moore, J. R. Curray, R. W. Raitt, F. J. Emmel, Initial Rep. Deep Sea Drill. Proj. 22, 403 (1974); Y. P. Neprochnov, O. V. Levchenko, L. R. Merklin, V. V. Sedov, Tectonophysics 156, 89 (1988); J. M. Bull, ibid. 184, 213 (1990); J. M. Bull and R. A. Scrutton, Nature 344, 855 (1990); N. Chamot-Rooke, F. Jestin, B. de Voogd, Phèdre Working Group, Geology 21, 1043 (1993).
    • (1990) Nature , vol.344 , pp. 855
    • Bull, J.M.1    Scrutton, R.A.2
  • 23
    • 84879879912 scopus 로고
    • J. R. Curray and D. G. Moore, Geol. Soc. Am. Bull. 82, 563 (1971); S. Eittreim and J. Ewing, J. Geophys. Res. 77, 6413 (1972); D. G. Moore, J. R. Curray, R. W. Raitt, F. J. Emmel, Initial Rep. Deep Sea Drill. Proj. 22, 403 (1974); Y. P. Neprochnov, O. V. Levchenko, L. R. Merklin, V. V. Sedov, Tectonophysics 156, 89 (1988); J. M. Bull, ibid. 184, 213 (1990); J. M. Bull and R. A. Scrutton, Nature 344, 855 (1990); N. Chamot-Rooke, F. Jestin, B. de Voogd, Phèdre Working Group, Geology 21, 1043 (1993).
    • (1993) Geology , vol.21 , pp. 1043
    • Chamot-Rooke, N.1    Jestin, F.2    De Voogd, B.3
  • 30
    • 24244477226 scopus 로고    scopus 로고
    • H. Hebert et al., Eos 46, F684 (1996).
    • (1996) Eos , vol.46
    • Hebert, H.1
  • 32
    • 1842347378 scopus 로고    scopus 로고
    • note
    • The location of each crossing of the old end of anomaly 5 is identified along a ship-board magnetic profile or aeromagnetic profile, which come from many sources. To avoid the loss of resolution inherent in digitizing analog records, especially from published figures, we used digital data whenever available. The magnetic-anomaly crossings flanking the CIR are taken from (12), except for the southernmost crossing of anomaly 5 on the Indo-Australian side of the MOR, which we now believe lies over sea floor created at the SEIR (Fig. 3A). The magnetic-anomaly crossings flanking the SWIR (Fig. 3B) have been redetermined and incorporate many unavailable to (3). Crossings west of 46°E have been excluded to avoid the portion of the SWIR recording motion between the Antarctic and Nubian plates and the deforming zone assumed to exist between the Nubian and Somalian plates (44). Thus, the new set of crossings are expected to record motion between the Antarctic and Somalian plates. We have added new crossings and reidentified many other crossings of anomaly 5 flanking the SEIR. There is thus little overlap with Royer and Chang's (3) set of magnetic-anomaly crossings flanking the SEIR. As in (3), we exclude data east of ∼140°E to avoid the southeast corner of the Australian plate, which has been hypothesized to be deforming in response to convergence with the Pacific plate (9, 45).
  • 33
    • 1842355274 scopus 로고    scopus 로고
    • note
    • The location of each crossing of a fracture zone is determined from satellite-derived gravity data. Along the CIR, the locations are crossings along individual processed profiles and are identical to those used by (12). Along the other two MOR systems, the crossings are interpreted from a gridded gravity map (19). The center of the fracture zone is assumed to lie at the center of the gravity trough for all fracture zones flanking the SWIR and CIR, which are spreading slowly and presumably resemble the morphology of the better studied fracture zones along the slowly spreading Mid-Atlantic Ridge. The signature of fracture zones flanking trie SEIR is more complex. Royer and Sandwell (45) estimated the locations of fracture-zone crossings assuming that the maximum slope in the calculated gravity (that is, roughly midway between an adjacent gravity peak and trough) lies over the center of the fracture zone, as is expected at a fast-spreading MOR such as the East Pacific Rise. The gravity grid from declassified Geosat data (19) indicates that the signature of fracture zones flanking the SEIR varies considerably from fracture zone to fracture zone. Some zones appear highly antisymmetric with respect to the SEIR with a fracture-zone trough on one side of the MOR correlating with a fracture-zone ridge on the other side; this indicates that the maximum slope between fracture-zone ridge and trough on one side of the MOR should be correlated with that on the other. Other fracture zones, however, resemble those along slowly spreading MORs, with a fracture-zone trough on one side of the MOR correlating with a trough on the other side. We selected for analysis three fracture zones south of Australia resembling those on slowly spreading ridges (Fig. 3A). Also needed were sets of fracture-zone crossings along the westernmost SEIR, which lacks clear, straight fracture zones that are continuous between anomaly 5 and the SEIR. For this region, we correlated the midpoint between fracture-zone ridge and trough on one side of the MOR with the midpoint on the other side of the MOR for three fracture zones that clearly offset anomaly 5 by about 30, 50, and 70 km from the westernmost to the easternmost fracture zone, respectively (Fig. 3A). We investigated the self-consistency of the interpretation of fracture-zone crossings and the resulting reconstructions by examining the distance between the nearest magnetic-anomaly crossing to a given fracture zone and the distance of the same crossing when reconstructed across the MOR from what was interpreted as the correlative feature. The interpreted crossings are consistent with our best-fitting rotations. The self-consistency was further investigated by matching up conjugate wandering offsets lying just NW of a fracture zone that intersects the SEIR near 32°S, 77°E (Fig. 3A). The three offsets match up within ∼10 km, consistent with our interpretation.
  • 34
    • 84950449502 scopus 로고
    • i is the r for a best-fitting rotation, as described above. Three is the number of independent rotations estimated (that is, m). Thus, r is expected to be chi-square distributed with three degrees of freedom.
    • (1988) J. Am. Stat. Assoc. , vol.83 , pp. 1178
    • Chang, T.1
  • 35
    • 0019657282 scopus 로고
    • i is the r for a best-fitting rotation, as described above. Three is the number of independent rotations estimated (that is, m). Thus, r is expected to be chi-square distributed with three degrees of freedom.
    • (1981) J. Geophys. Res. , vol.86 , pp. 9312
    • Hellinger, S.J.1
  • 36
    • 1842397781 scopus 로고    scopus 로고
    • note
    • Uncertainties in the data were mainly assigned from preliminary estimates of the standard deviation of subsets of data. Error assignments for crossings along the CIR are identical to those assigned by (12). In brief, all fracture-zone crossings along the CIR were assigned errors of 5 km. Magnetic-anomaly crossings along the CIR were divided into four groups, mainly based on when the magnetic profiles were acquired, with the oldest profiles being assigned the largest uncertainties (1σ error of 5.2 km), the most recently acquired profiles being assigned the smallest error (1σ error of 3.0 km), and the two intermediate groups being assigned errors of 3.2 km and 3.9 km. Magnetic-anomaly crossings along the SWIR were assigned a 1σ error of 4 km, whereas fracture-zone crossings along the SWIR were assigned a 1σ error of 5 km. The dispersion of the data indicates that the uncertainties should be 30 to 40% smaller, but we are reluctant to shrink the assigned errors further. Along the SEIR, fracture-zone crossings were assigned a 1σ error of 6 km. West of ∼78°E along the SEIR, where we reexamined the magnetic-anomaly profiles in detail and where the dispersion is low, we assigned a 1σ error of 4 km to the magnetic-anomaly crossings. The dispersion of these crossings along the western SEIR indicate that the error should be about three times smaller, but we are reluctant to assign smaller errors based on such a small data set. The 102 magnetic-anomaly crossings along the SEIR east of ∼85°E were assigned a 1σ error of 5 km, except for 12 crossings from the Eltanin cruises, which were assigned a larger error of 10 km because these profiles were collected in the 1960s, before the advent of satellite navigation, and have highly dispersed crossings of anomaly 5.
  • 37
    • 1842383121 scopus 로고    scopus 로고
    • note
    • Inasmuch as the precision parameter κ̂ for individual plate pairs exceeds 1 for each plate pair (and exceeds 2 in two of the three cases), it seems more likely that we have overestimated rather than underestimated the errors.
  • 38
    • 1842274441 scopus 로고    scopus 로고
    • note
    • All uncertainties following "±" signs in this paper are 95% confidence limits.
  • 39
    • 1842389968 scopus 로고    scopus 로고
    • note
    • Even if we use the more restrictive F-ratio test for closure, which is equivalent to assuming that all errors assigned to the data are overestimated by a uniform multiplicative constant, a value of F of 2.196 is obtained. This value has a 9% probability of occurring by chance if the plates are rigid and is therefore consistent with closure.
  • 40
    • 1842316635 scopus 로고    scopus 로고
    • note
    • 2.
  • 41
    • 1842388060 scopus 로고    scopus 로고
    • note
    • If the fracture-zone crossings are omitted from the western SEIR data, the data are still significantly misfit. The value of Δr is 14.2 with three degrees of freedom, which has a probability of being exceeded by chance of less than 0.003.
  • 42
    • 1842340651 scopus 로고    scopus 로고
    • note
    • -6 sr, where the x, y, and z axes parallel (0°N, 0°E), (0°N, 90°E), and 90°N, respectively.
  • 43
    • 0025207077 scopus 로고
    • C. DeMets, R. G. Gordon, D. F. Argus, S. Stein, Geophys. J. Int. 101, 425 (1990); R. G. Gordon, in Global Earth Physics: A Handbook of Physical Constants, T. J. Ahrens, Ed. (AGU Reference Shelf 1, American Geophysical Union, Washington, DC, 1995), pp. 66-87.
    • (1990) Geophys. J. Int. , vol.101 , pp. 425
    • DeMets, C.1    Gordon, R.G.2    Argus, D.F.3    Stein, S.4
  • 44
    • 0001997225 scopus 로고
    • T. J. Ahrens, Ed. AGU Reference Shelf 1, American Geophysical Union, Washington, DC
    • C. DeMets, R. G. Gordon, D. F. Argus, S. Stein, Geophys. J. Int. 101, 425 (1990); R. G. Gordon, in Global Earth Physics: A Handbook of Physical Constants, T. J. Ahrens, Ed. (AGU Reference Shelf 1, American Geophysical Union, Washington, DC, 1995), pp. 66-87.
    • (1995) Global Earth Physics: A Handbook of Physical Constants , pp. 66-87
    • Gordon, R.G.1
  • 45
    • 1842272452 scopus 로고    scopus 로고
    • note
    • This low rate of spreading likely occurs in the Red Sea (44).
  • 46
    • 1842306142 scopus 로고
    • thesis, Northwestern University
    • D. F. Argus, thesis, Northwestern University (1990); D. F. Argus and R. G. Gordon, unpublished manuscript.
    • (1990)
    • Argus, D.F.1
  • 47
    • 1842319506 scopus 로고    scopus 로고
    • unpublished manuscript
    • D. F. Argus, thesis, Northwestern University (1990); D. F. Argus and R. G. Gordon, unpublished manuscript.
    • Argus, D.F.1    Gordon, R.G.2
  • 48
    • 1842307134 scopus 로고    scopus 로고
    • note
    • DeMets et al. (8) recently reexamined the consistency of 0-to 3-Ma plate motion data with closure about the RTJ. If they assumed that all the data uncertainties were overestimated by a uniform multiplicative constant, their data are inconsistent with closure at the 0.03% significance level. This result is not completely convincing, however. If they test for closure using the errors assigned to the data, the nonclosure is insignificant. Moreover, the errors they assigned to azimuths of transform faults along the CIR are realistic but inconsistent with those carried over from earlier work along the other two ridge systems. Therefore, further analysis of the 0-to 3-Ma data is required before the case for or against significant nonclosure can be made convincing. In any event, their results place an upper bound on the integral of possible deformation rate around this circuit of ∼4 to 7 mm/year, which is large enough to allow deformation as large as we find here.
  • 49
    • 0029476533 scopus 로고
    • M. J. Tinnon et al. [J. Geophys. Res. 100, 24315 (1995)] used earthquake moment tensor data to estimate the pole of rotation between previously defined Indian and Australian plates. Their pole of rotation (10°S, 81°E), although differing insignificantly from what we now interpret as the India-Capricorn pole of rotation, is in even better agreement with the new pole of rotation of India relative to Australia. This is encouraging because many of the earthquakes they analyzed are from what we now interpret as the Capricorn-Australia and India-Australia determing zones, as well as the triple junction where the three zones of shortening meet.
    • (1995) J. Geophys. Res. , vol.100 , pp. 24315
    • Tinnon, M.J.1
  • 50
    • 0024228347 scopus 로고
    • P. Molnar, Nature 335, 131 (1988).
    • (1988) Nature , vol.335 , pp. 131
    • Molnar, P.1
  • 52
    • 37049043381 scopus 로고    scopus 로고
    • J. T. Wilson, Nature 207, 343 (1965); D. McKenzie and R. L. Parker, ibid. 216, 1276 (1967); W. J. Morgan, J. Geophys. Res. 73, 1959 (1968); X. Le Pichon, ibid., p. 3661.
    • (1965) Nature , vol.207 , pp. 343
    • Wilson, J.T.1
  • 53
    • 0345823105 scopus 로고
    • J. T. Wilson, Nature 207, 343 (1965); D. McKenzie and R. L. Parker, ibid. 216, 1276 (1967); W. J. Morgan, J. Geophys. Res. 73, 1959 (1968); X. Le Pichon, ibid., p. 3661.
    • (1967) Nature , vol.216 , pp. 1276
    • McKenzie, D.1    Parker, R.L.2
  • 54
    • 37049043381 scopus 로고    scopus 로고
    • J. T. Wilson, Nature 207, 343 (1965); D. McKenzie and R. L. Parker, ibid. 216, 1276 (1967); W. J. Morgan, J. Geophys. Res. 73, 1959 (1968); X. Le Pichon, ibid., p. 3661.
    • (1968) J. Geophys. Res. , vol.73 , pp. 1959
    • Morgan, W.J.1
  • 55
    • 37049043381 scopus 로고    scopus 로고
    • J. T. Wilson, Nature 207, 343 (1965); D. McKenzie and R. L. Parker, ibid. 216, 1276 (1967); W. J. Morgan, J. Geophys. Res. 73, 1959 (1968); X. Le Pichon, ibid., p. 3661.
    • J. Geophys. Res. , pp. 3661
    • Le Pichon, X.1
  • 56
    • 0012452199 scopus 로고
    • J. K. Crouch and S. B. Bachman, Eds. Pacific Section of the Society of Economic Mineralogists and Paleontologists, Los Angeles, CA
    • Plate motions predicted across a narrow plate boundary are very specific, consisting of an explicit prediction of the displacement or velocity across or along any point on the narrow plate boundary. Motions predicted across a wide boundary specify only the integral of the deformation or velocity gradient along a path crossing the wide boundary and connecting a point on one rigid plate to a point on another [J. B. Minster and T. H. Jordan, in Tectonics and Sedimentation Along the California Margin, J. K. Crouch and S. B. Bachman, Eds. (Pacific Section of the Society of Economic Mineralogists and Paleontologists, Los Angeles, CA, 1984), vol. 38, pp. 1-16].
    • (1984) Tectonics and Sedimentation Along the California Margin , vol.38 , pp. 1-16
    • Minster, J.B.1    Jordan, T.H.2
  • 61
    • 0026292681 scopus 로고
    • This work was supported by CNRS and Plan National de Télédétection Spatiale, the NSF-CNRS U.S.-France cooperative program (NSF grant INT-9314549), and NSF grant OCE-9596284 (R.G.G.). The figures were drafted using the GMT software [P. Wessel and W. H. F. Smith, Eos 372, 441 (1991)]. Géosciences Azur contribution number 111.
    • (1991) Eos , vol.372 , pp. 441
    • Wessel, P.1    Smith, W.H.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.