메뉴 건너뛰기




Volumn 60, Issue 1, 1997, Pages 111-122

Dependence and order in families of Archimedean copulas

(1)  Nelsen, Roger B a  

a NONE

Author keywords

Archimedean copula; Bivariate distribution; Concordance ordering; Lower tail dependence; Multivariate distribution; Upper tail dependence

Indexed keywords


EID: 0030703728     PISSN: 0047259X     EISSN: None     Source Type: Journal    
DOI: 10.1006/jmva.1996.1646     Document Type: Article
Times cited : (49)

References (14)
  • 2
    • 0001327484 scopus 로고
    • A class of bivariate distributions including the bivariate logistic
    • [2] Alli, M. M., Mikhail, N. N., and Haq, M. S. (1978). A class of bivariate distributions including the bivariate logistic. J. Multivariate Anal. 8 405-412.
    • (1978) J. Multivariate Anal. , vol.8 , pp. 405-412
    • Alli, M.M.1    Mikhail, N.N.2    Haq, M.S.3
  • 3
    • 0001606204 scopus 로고
    • A family of distributions for modeling non-elliptically symmetric multivariate data
    • [3] Cook, R. D., and Johnson, M. E. (1981). A family of distributions for modeling non-elliptically symmetric multivariate data. J. Roy. Statist. Soc. B. 53 377-392.
    • (1981) J. Roy. Statist. Soc. B. , vol.53 , pp. 377-392
    • Cook, R.D.1    Johnson, M.E.2
  • 5
    • 0001070713 scopus 로고
    • On the simultaneous associativity of F(x, y) and x+y-F(x, y)
    • [5] Frank, M. J. (1979). On the simultaneous associativity of F(x, y) and x+y-F(x, y). Aequationes Math. 19 194-226.
    • (1979) Aequationes Math. , vol.19 , pp. 194-226
    • Frank, M.J.1
  • 6
    • 84988077149 scopus 로고
    • Copules archimédiennes et familles de lois bidimensionelles dont les marges sont données
    • [6] Genest, C., and MacKay, R. J. (1986). Copules archimédiennes et familles de lois bidimensionelles dont les marges sont données. Canad. J. Statist. 14 145-159.
    • (1986) Canad. J. Statist. , vol.14 , pp. 145-159
    • Genest, C.1    MacKay, R.J.2
  • 7
    • 84953078660 scopus 로고
    • The joy of copulas: Bivariate distributions with uniform marginals
    • [7] Genest, C., and MacKay, R. J. (1986). The joy of copulas: Bivariate distributions with uniform marginals. Amer. Statist. 40 280-285.
    • (1986) Amer. Statist. , vol.40 , pp. 280-285
    • Genest, C.1    MacKay, R.J.2
  • 8
    • 0000609608 scopus 로고
    • De l'impossibilité de construire des lois à marges multidimensionnelles données à partir de copules
    • [8] Genest, C., Quesada Molina, J. J., and Rodríguez Lallena, J. A. (1995). De l'impossibilité de construire des lois à marges multidimensionnelles données à partir de copules. C. R. Acad. Sci. Paris Sér. I Math. 320 723-726.
    • (1995) C. R. Acad. Sci. Paris Sér. I Math. , vol.320 , pp. 723-726
    • Genest, C.1    Quesada Molina, J.J.2    Rodríguez Lallena, J.A.3
  • 9
    • 0001133150 scopus 로고
    • Distributions des valeurs extrêmes en plusieurs dimensions
    • [9] Gumbel, E. J. (1960). Distributions des valeurs extrêmes en plusieurs dimensions. Publ. Inst. Statist. Univ. Paris 9 171-173.
    • (1960) Publ. Inst. Statist. Univ. Paris , vol.9 , pp. 171-173
    • Gumbel, E.J.1
  • 11
    • 0001370079 scopus 로고
    • Parametric families of multivariate distributions with given margins
    • [11] Joe, H. (1993). Parametric families of multivariate distributions with given margins. J. Multivariate Anal. 46 262-282.
    • (1993) J. Multivariate Anal. , vol.46 , pp. 262-282
    • Joe, H.1
  • 12
    • 0001247328 scopus 로고
    • Some new constructions of bivariate Weibull models
    • [12] Lu, J.-C., and Bhattacharyya, G. K. (1990). Some new constructions of bivariate Weibull models. Ann. Inst. Statist. Math. 42 543-559.
    • (1990) Ann. Inst. Statist. Math. , vol.42 , pp. 543-559
    • Lu, J.-C.1    Bhattacharyya, G.K.2
  • 13
    • 84903879593 scopus 로고
    • Families of multivariate distributions
    • [13] Marshall, A. W., and Olkin, I. (1988). Families of multivariate distributions. J. Amer. Statist. Assoc. 83 834-841.
    • (1988) J. Amer. Statist. Assoc. , vol.83 , pp. 834-841
    • Marshall, A.W.1    Olkin, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.