-
2
-
-
0003252813
-
Soliton equations and Hamiltonian systems
-
World Scientific, River Edge, NJ
-
2. L. A. Dickey, "Soliton Equations and Hamiltonian Systems," Advanced Series in Math. and Physics, Vol. 12, World Scientific, River Edge, NJ, 1991.
-
(1991)
Advanced Series in Math. and Physics
, vol.12
-
-
Dickey, L.A.1
-
3
-
-
0010953049
-
Derivations and central extensions of the Lie algebras of pseudodifferential symbols
-
3. A. S. Dhumaduldaev, Derivations and central extensions of the Lie algebras of pseudodifferential symbols, Algebra i Analiz 6, No. 1 (1994), 140-158.
-
(1994)
Algebra I Analiz
, vol.6
, Issue.1
, pp. 140-158
-
-
Dhumaduldaev, A.S.1
-
4
-
-
0000481618
-
Quantum groups
-
AMS, Providence, RI, 1987
-
4. V. G. Drinfeld, Quantum groups, in "Proceedings of the ICM," Vol. 1, pp. 798-820, AMS, Providence, RI, 1987.
-
Proceedings of the ICM
, vol.1
, pp. 798-820
-
-
Drinfeld, V.G.1
-
5
-
-
0011839345
-
Trigonometric structure constants for new infinite-dimensional algebras
-
5. D. B. Fairlie, P. Fletcher, and C. K. Zachos, Trigonometric structure constants for new infinite-dimensional algebras, Phys. Lett. B 218 (1989), 203-206.
-
(1989)
Phys. Lett. B
, vol.218
, pp. 203-206
-
-
Fairlie, D.B.1
Fletcher, P.2
Zachos, C.K.3
-
6
-
-
9344233695
-
Infinite-dimensional algebras and a trigonometric basis for the classical Lie algebras
-
6. D. B. Fairlie, P. Fletcher, and C. K. Zachos, Infinite-dimensional algebras and a trigonometric basis for the classical Lie algebras, J. Math. Phys. 31, No. 5 (1990), 1088-1094.
-
(1990)
J. Math. Phys.
, vol.31
, Issue.5
, pp. 1088-1094
-
-
Fairlie, D.B.1
Fletcher, P.2
Zachos, C.K.3
-
7
-
-
33744776799
-
Infinite-dimensional algebras, sine brackets, and SU(∞)
-
7. D. B. Fairlie and C. K. Zachos, Infinite-dimensional algebras, sine brackets, and SU(∞), Phys. Lett. B 224, Nos. 1-2 (1989), 101-107.
-
(1989)
Phys. Lett. B
, vol.224
, Issue.1-2
, pp. 101-107
-
-
Fairlie, D.B.1
Zachos, C.K.2
-
8
-
-
0001345820
-
The Lie algebras gl(λ) and cohomologies of Lie algebras of differential operators
-
8. B. L. Feigin, The Lie algebras gl(λ) and cohomologies of Lie algebras of differential operators, Russian Math. Surveys 43, No. 2 (1988), 169-170.
-
(1988)
Russian Math. Surveys
, vol.43
, Issue.2
, pp. 169-170
-
-
Feigin, B.L.1
-
10
-
-
34250297237
-
Fractional powers of operators, and Hamiltonian systems
-
10. I. M. Gelfand and L. A. Dickii, Fractional powers of operators, and Hamiltonian systems, Funct. Anal. Appl. 10, No. 4 (1976), 13-29.
-
(1976)
Funct. Anal. Appl.
, vol.10
, Issue.4
, pp. 13-29
-
-
Gelfand, I.M.1
Dickii, L.A.2
-
11
-
-
0000891624
-
The cohomologies of the Lie algebra of the vector fields in a circle
-
11. I. M. Gelfand and D. B. Fuks, The cohomologies of the Lie algebra of the vector fields in a circle, Funct. Anal. Appl. 2, No. 4 (1968), 342-343.
-
(1968)
Funct. Anal. Appl.
, vol.2
, Issue.4
, pp. 342-343
-
-
Gelfand, I.M.1
Fuks, D.B.2
-
12
-
-
38249009073
-
On the cohomology of the Lie algebra of Hamiltonian vector fields
-
12. I. M. Gelfand and O. Mathieu, On the cohomology of the Lie algebra of Hamiltonian vector fields, J. Funct. Anal. 108 (1992), 347-360.
-
(1992)
J. Funct. Anal.
, vol.108
, pp. 347-360
-
-
Gelfand, I.M.1
Mathieu, O.2
-
13
-
-
0002456318
-
Algebraic cohomology and deformation theory
-
Deformation Theory of Algebras and Structures and Applications, Sect. 7
-
13. M. Gerstenhaber and S. D. Schack, Algebraic cohomology and deformation theory, in "Deformation Theory of Algebras and Structures and Applications," Nato ASI Series, Vol. 247, Sect. 7.
-
Nato ASI Series
, vol.247
-
-
Gerstenhaber, M.1
Schack, S.D.2
-
14
-
-
0010956790
-
Cyclic homology and Beilinson-Manin-Schechtman central extension
-
14. E. Getzler, Cyclic homology and Beilinson-Manin-Schechtman central extension, Proc. Amer. Math. Soc. 104, No. 3 (1988), 729-734.
-
(1988)
Proc. Amer. Math. Soc.
, vol.104
, Issue.3
, pp. 729-734
-
-
Getzler, E.1
-
18
-
-
21344481201
-
Dynamical systems on quantum tori Lie algebras
-
18. J. Hoppe, M. Olshanetsky, and S. Theisen, Dynamical systems on quantum tori Lie algebras, Comm. Math. Phys. 155, No. 3 (1993), 429-448.
-
(1993)
Comm. Math. Phys.
, vol.155
, Issue.3
, pp. 429-448
-
-
Hoppe, J.1
Olshanetsky, M.2
Theisen, S.3
-
20
-
-
0019490954
-
Spin and wedge representations of infinite dimensional Lie algebras and groups
-
20. V. G. Kac and D. M. Peterson, Spin and wedge representations of infinite dimensional Lie algebras and groups, Proc. Natl. Acad. Sci. USA 78 (1981), 3308-3312.
-
(1981)
Proc. Natl. Acad. Sci. USA
, vol.78
, pp. 3308-3312
-
-
Kac, V.G.1
Peterson, D.M.2
-
21
-
-
18844422980
-
Quasifinite highest weight modules over the Lie algebra of differential operators on the circle
-
21. V. G. Kac and A. O. Radul, Quasifinite highest weight modules over the Lie algebra of differential operators on the circle, Comm. Math. Phys. 157, No. 3 (1993), 429-457.
-
(1993)
Comm. Math. Phys.
, vol.157
, Issue.3
, pp. 429-457
-
-
Kac, V.G.1
Radul, A.O.2
-
22
-
-
0000714588
-
Cyclic homology of differential operators, the Virasoro algebra and a q-analogue
-
22. C. Kassel, Cyclic homology of differential operators, the Virasoro algebra and a q-analogue, Comm. Math. Phys. 146 (1992), 343-356.
-
(1992)
Comm. Math. Phys.
, vol.146
, pp. 343-356
-
-
Kassel, C.1
-
23
-
-
0011021470
-
Poisson-Lie group of pseudodifferential operators and fractional KP-KdV hierarchies
-
23. B. A. Khesin and I. S. Zakharevich, Poisson-Lie group of pseudodifferential operators and fractional KP-KdV hierarchies, C. R. Acad. Sci. Paris, Sér. I 315 (1993), 621-626; Poisson-Lie group of pseudodifferential operators, Comm. Math. Phys. 171, No. 3 (1995), 475-530.
-
(1993)
C. R. Acad. Sci. Paris, Sér. I
, vol.315
, pp. 621-626
-
-
Khesin, B.A.1
Zakharevich, I.S.2
-
24
-
-
0040912462
-
Poisson-Lie group of pseudodifferential operators
-
B. A. Khesin and I. S. Zakharevich, Poisson-Lie group of pseudodifferential operators and fractional KP-KdV hierarchies, C. R. Acad. Sci. Paris, Sér. I 315 (1993), 621-626; Poisson-Lie group of pseudodifferential operators, Comm. Math. Phys. 171, No. 3 (1995), 475-530.
-
(1995)
Comm. Math. Phys.
, vol.171
, Issue.3
, pp. 475-530
-
-
-
25
-
-
0002857166
-
La géométrie des moments pour les groupes de difféomorphismes
-
(A. Connes et al., Eds.), Birkhäuser, Boston
-
24. A. A. Kirillov, La géométrie des moments pour les groupes de difféomorphismes, in "Progress in Math." (A. Connes et al., Eds.), Vol. 92, pp. 73-82, Birkhäuser, Boston, 1990.
-
(1990)
Progress in Math.
, vol.92
, pp. 73-82
-
-
Kirillov, A.A.1
-
27
-
-
0009250840
-
A nontrivial central extension of the Lie algebra of pseudodifferential symbols on the circle
-
26. O. S. Kravchenko and B. A. Khesin, A nontrivial central extension of the Lie algebra of pseudodifferential symbols on the circle, Funct. Anal. Appl. 25, No. 2 (1991), 83-85.
-
(1991)
Funct. Anal. Appl.
, vol.25
, Issue.2
, pp. 83-85
-
-
Kravchenko, O.S.1
Khesin, B.A.2
-
28
-
-
0011041959
-
Applications of the cohomology of graded Lie algebras to formal deformations of Lie algebras
-
27. P. Lecomte, Applications of the cohomology of graded Lie algebras to formal deformations of Lie algebras, Lett. Math. Phys. 13 (1987), 157-166.
-
(1987)
Lett. Math. Phys.
, vol.13
, pp. 157-166
-
-
Lecomte, P.1
-
30
-
-
0000461625
-
Modules et cohomologie des bigèbres de Lie
-
29. P. Lecompte and C. Roger, Modules et cohomologie des bigèbres de Lie, C. R. Acad. Sci. Paris Sér. I 310 (1990), 405-410.
-
(1990)
C. R. Acad. Sci. Paris Sér. I
, vol.310
, pp. 405-410
-
-
Lecompte, P.1
Roger, C.2
-
31
-
-
53349132739
-
Formal deformations of the Poisson-Lie algebra of a symplectic manifold and star products. Existence, equivalence, derivations
-
Deformations Theory of Algebras and Structures, Kluwer Academic, Dordrecht
-
30. P. Lecomte and M. De Wilde, Formal deformations of the Poisson-Lie algebra of a symplectic manifold and star products. Existence, equivalence, derivations, in "Deformations Theory of Algebras and Structures," NATO-ASI Series C, Vol. 297, Kluwer Academic, Dordrecht.
-
NATO-ASI Series C
, vol.297
-
-
Lecomte, P.1
De Wilde, M.2
-
32
-
-
0002489031
-
2-Cocycles on the Lie algebra of differential operators
-
31. W.-L. Li, 2-cocycles on the Lie algebra of differential operators, J. Algebra 122 (1989), 64-80.
-
(1989)
J. Algebra
, vol.122
, pp. 64-80
-
-
Li, W.-L.1
-
33
-
-
0011021843
-
Diffeomorphisms from higher dimensional W-algebras
-
32. F. Martinez Moras, J. Mas, and E. Ramos, Diffeomorphisms from higher dimensional W-algebras, Modern Phys. Lett. A 8, No. 23 (1993), 2189-2197.
-
(1993)
Modern Phys. Lett. A
, vol.8
, Issue.23
, pp. 2189-2197
-
-
Martinez Moras, F.1
Mas, J.2
Ramos, E.3
-
35
-
-
0003863511
-
-
Cambridge University Press, Cambridge
-
34. A. Pressley and G. Segal, "Loop Groups," Cambridge University Press, Cambridge, 1984.
-
(1984)
Loop Groups
-
-
Pressley, A.1
Segal, G.2
-
36
-
-
0001442173
-
Algèbres de Lie graduées et quantification
-
Symplectic Geometry and Mathematical Physics, Birkhäuser-Verlag, Boston/Basel
-
35. C. Roger, Algèbres de Lie graduées et quantification, in "Symplectic Geometry and Mathematical Physics," Progress in Math., Vol. 99, Birkhäuser-Verlag, Boston/Basel, 1991.
-
(1991)
Progress in Math.
, vol.99
-
-
Roger, C.1
-
37
-
-
0010992070
-
-
preprint, Inst. de Math., Univ. de Liège
-
36. C. Roger, Extensions centrales d'algèbres et de groupes de Lie de dimension infinie, algèbre de Virasoro et généralisations, preprint, Inst. de Math., Univ. de Liège, 1993.
-
(1993)
Extensions Centrales d'Algèbres et de Groupes de Lie de Dimension Infinie, Algèbre de Virasoro et Généralisations
-
-
Roger, C.1
-
38
-
-
3042755925
-
New examples of continuum graded Lie algebras
-
37. M. V. Saveliev and A. M. Vershik, New examples of continuum graded Lie algebras, Phys. Lett. A 143, No. 3 (1990), 121-128.
-
(1990)
Phys. Lett. A
, vol.143
, Issue.3
, pp. 121-128
-
-
Saveliev, M.V.1
Vershik, A.M.2
-
39
-
-
51249189461
-
Déformation du crochet de Poisson sur une variété symplectique
-
38. J. Vey, Déformation du crochet de Poisson sur une variété symplectique, Comment. Math. Helv. 50, No. 4 (1975), 421-454.
-
(1975)
Comment. Math. Helv.
, vol.50
, Issue.4
, pp. 421-454
-
-
Vey, J.1
-
41
-
-
84972562861
-
Cyclic homology of differential operators
-
40. M. Wodzicki, Cyclic homology of differential operators, Duke Math. J. 54 (1987), 641-647.
-
(1987)
Duke Math. J.
, vol.54
, pp. 641-647
-
-
Wodzicki, M.1
|