메뉴 건너뛰기




Volumn 278, Issue 5340, 1997, Pages 1114-1117

Lake Baikal record of continental climate response to orbital insolation during the past 5 million years

Author keywords

[No Author keywords available]

Indexed keywords

FRESH WATER; LAKE WATER;

EID: 0030686553     PISSN: 00368075     EISSN: None     Source Type: Journal    
DOI: 10.1126/science.278.5340.1114     Document Type: Article
Times cited : (230)

References (57)
  • 9
    • 0001395097 scopus 로고
    • E. S. Vrba, G. H. Denton, T. C. Partidge, L. H. Burckle, Eds. Yale Univ. Press, New Haven, CT
    • _ and J. Bloemendal, in Paleoclimate and Evolution with Emphasis on Human Origins, E. S. Vrba, G. H. Denton, T. C. Partidge, L. H. Burckle, Eds. (Yale Univ. Press, New Haven, CT, 1995), pp 262-288.
    • (1995) Paleoclimate and Evolution with Emphasis on Human Origins , pp. 262-288
    • Bloemendal, J.1
  • 10
    • 0026272612 scopus 로고
    • F. Gasse et al., Nature 353, 742 (1991); K. K. Kelts et al., Eclogae Geol. Helv. 82, 167 (1989).
    • (1991) Nature , vol.353 , pp. 742
    • Gasse, F.1
  • 11
    • 0024527291 scopus 로고
    • F. Gasse et al., Nature 353, 742 (1991); K. K. Kelts et al., Eclogae Geol. Helv. 82, 167 (1989).
    • (1989) Eclogae Geol. Helv. , vol.82 , pp. 167
    • Kelts, K.K.1
  • 14
    • 0003293530 scopus 로고
    • W. Koppen and R. Geiger, Eds. Gebruder Borntraeger, Berlin
    • M. Milankovitch, in Handbuch der Klimatologie, W. Koppen and R. Geiger, Eds. (Gebruder Borntraeger, Berlin, 1930), pp. 1-176.
    • (1930) Handbuch der Klimatologie , pp. 1-176
    • Milankovitch, M.1
  • 15
    • 25944431771 scopus 로고    scopus 로고
    • abstr.
    • J. A. Peck, J. W. King, V. A. Kravchinsky, M. I. Kuzmin, D. F. Williams, Eos (Spring Suppl.) 78, S115 (abstr.) (1996); D. Williams et al., in preparation; M. I. Kuzmin et al., Russ. J. Geol. Geophys. 38, 27 (1997); D. F. Williams, IPPCCE Newsl. 6, 4 (1992); M. I. Kuzmin and D. F. Williams, Russ. J. Geol. Geophys. 34, 3 (1993); Baikal Drilling Project Members (BDP-93), ibid. 36, 3 (1995); Quat. Int. 37, 3 (1997).
    • (1996) Eos (Spring Suppl.) , vol.78
    • Peck, J.A.1    King, J.W.2    Kravchinsky, V.A.3    Kuzmin, M.I.4    Williams, D.F.5
  • 16
    • 1842410329 scopus 로고    scopus 로고
    • in preparation
    • J. A. Peck, J. W. King, V. A. Kravchinsky, M. I. Kuzmin, D. F. Williams, Eos (Spring Suppl.) 78, S115 (abstr.) (1996); D. Williams et al., in preparation; M. I. Kuzmin et al., Russ. J. Geol. Geophys. 38, 27 (1997); D. F. Williams, IPPCCE Newsl. 6, 4 (1992); M. I. Kuzmin and D. F. Williams, Russ. J. Geol. Geophys. 34, 3 (1993); Baikal Drilling Project Members (BDP-93), ibid. 36, 3 (1995); Quat. Int. 37, 3 (1997).
    • Williams, D.1
  • 17
    • 1842291706 scopus 로고    scopus 로고
    • J. A. Peck, J. W. King, V. A. Kravchinsky, M. I. Kuzmin, D. F. Williams, Eos (Spring Suppl.) 78, S115 (abstr.) (1996); D. Williams et al., in preparation; M. I. Kuzmin et al., Russ. J. Geol. Geophys. 38, 27 (1997); D. F. Williams, IPPCCE Newsl. 6, 4 (1992); M. I. Kuzmin and D. F. Williams, Russ. J. Geol. Geophys. 34, 3 (1993); Baikal Drilling Project Members (BDP-93), ibid. 36, 3 (1995); Quat. Int. 37, 3 (1997).
    • (1997) Russ. J. Geol. Geophys. , vol.38 , pp. 27
    • Kuzmin, M.I.1
  • 18
    • 1842296526 scopus 로고
    • J. A. Peck, J. W. King, V. A. Kravchinsky, M. I. Kuzmin, D. F. Williams, Eos (Spring Suppl.) 78, S115 (abstr.) (1996); D. Williams et al., in preparation; M. I. Kuzmin et al., Russ. J. Geol. Geophys. 38, 27 (1997); D. F. Williams, IPPCCE Newsl. 6, 4 (1992); M. I. Kuzmin and D. F. Williams, Russ. J. Geol. Geophys. 34, 3 (1993); Baikal Drilling Project Members (BDP-93), ibid. 36, 3 (1995); Quat. Int. 37, 3 (1997).
    • (1992) IPPCCE Newsl. , vol.6 , pp. 4
    • Williams, D.F.1
  • 19
    • 0002493146 scopus 로고
    • J. A. Peck, J. W. King, V. A. Kravchinsky, M. I. Kuzmin, D. F. Williams, Eos (Spring Suppl.) 78, S115 (abstr.) (1996); D. Williams et al., in preparation; M. I. Kuzmin et al., Russ. J. Geol. Geophys. 38, 27 (1997); D. F. Williams, IPPCCE Newsl. 6, 4 (1992); M. I. Kuzmin and D. F. Williams, Russ. J. Geol. Geophys. 34, 3 (1993); Baikal Drilling Project Members (BDP-93), ibid. 36, 3 (1995); Quat. Int. 37, 3 (1997).
    • (1993) Russ. J. Geol. Geophys. , vol.34 , pp. 3
    • Kuzmin, M.I.1    Williams, D.F.2
  • 20
    • 1842334651 scopus 로고
    • J. A. Peck, J. W. King, V. A. Kravchinsky, M. I. Kuzmin, D. F. Williams, Eos (Spring Suppl.) 78, S115 (abstr.) (1996); D. Williams et al., in preparation; M. I. Kuzmin et al., Russ. J. Geol. Geophys. 38, 27 (1997); D. F. Williams, IPPCCE Newsl. 6, 4 (1992); M. I. Kuzmin and D. F. Williams, Russ. J. Geol. Geophys. 34, 3 (1993); Baikal Drilling Project Members (BDP-93), ibid. 36, 3 (1995); Quat. Int. 37, 3 (1997).
    • (1995) Russ. J. Geol. Geophys. , vol.36 , pp. 3
  • 21
    • 1842327587 scopus 로고    scopus 로고
    • J. A. Peck, J. W. King, V. A. Kravchinsky, M. I. Kuzmin, D. F. Williams, Eos (Spring Suppl.) 78, S115 (abstr.) (1996); D. Williams et al., in preparation; M. I. Kuzmin et al., Russ. J. Geol. Geophys. 38, 27 (1997); D. F. Williams, IPPCCE Newsl. 6, 4 (1992); M. I. Kuzmin and D. F. Williams, Russ. J. Geol. Geophys. 34, 3 (1993); Baikal Drilling Project Members (BDP-93), ibid. 36, 3 (1995); Quat. Int. 37, 3 (1997).
    • (1997) Quat. Int. , vol.37 , pp. 3
  • 23
    • 1842298320 scopus 로고    scopus 로고
    • thesis, University of South Carolina, Columbia
    • As demonstrated by A. A. Prokopenko [thesis, University of South Carolina, Columbia (1997)], the link between the biogenic silica flux to the bottom rests on the concept of hydrodynamic limitation of diatom production in Lake Baikal, which relates diatom blooms occurring under the ice in spring to high turbulence of upper layer waters. Because of the turbulence, diatoms do not sink from the trophogenic layer. The lower boundary for the upper mixed waters is the layer of mesothermal maximum of density existing during winter-spring stratification at 200 to 300 m in Lake Baikal [R. F. Weiss, E. C. Carmack, V. M. Koropalov, Nature 349, 665 (1991)]. Similar conditions do not occur in other seasons, and that is why as soon as the ice melts and the water column thermally restructures, the bloom ceases. Long-term insolation changes control the heat balance of the water column, and during glacial periods, when the depth of mesothermal maximum of water density deepens to 500 m, the diatom blooms do not occur, and production between glacial and interglacial periods changes by up to two to three orders of magnitude [M. N. Shimaraev, N. G. Granin, A. A. Zhdanov, Limnol. Oceanogr. 38, 1068 (1993)] in response to insolation orbital forcing. Through this model, biogenic silica and diatom abundance become two excellent proxies within a multiple proxy data set including magnetic susceptibility, lithogenic flux, pollen-spore composition changes, and diatom assemblage changes.
    • (1997)
    • Prokopenko, A.A.1
  • 24
    • 0025925679 scopus 로고
    • As demonstrated by A. A. Prokopenko [thesis, University of South Carolina, Columbia (1997)], the link between the biogenic silica flux to the bottom rests on the concept of hydrodynamic limitation of diatom production in Lake Baikal, which relates diatom blooms occurring under the ice in spring to high turbulence of upper layer waters. Because of the turbulence, diatoms do not sink from the trophogenic layer. The lower boundary for the upper mixed waters is the layer of mesothermal maximum of density existing during winter-spring stratification at 200 to 300 m in Lake Baikal [R. F. Weiss, E. C. Carmack, V. M. Koropalov, Nature 349, 665 (1991)]. Similar conditions do not occur in other seasons, and that is why as soon as the ice melts and the water column thermally restructures, the bloom ceases. Long-term insolation changes control the heat balance of the water column, and during glacial periods, when the depth of mesothermal maximum of water density deepens to 500 m, the diatom blooms do not occur, and production between glacial and interglacial periods changes by up to two to three orders of magnitude [M. N. Shimaraev, N. G. Granin, A. A. Zhdanov, Limnol. Oceanogr. 38, 1068 (1993)] in response to insolation orbital forcing. Through this model, biogenic silica and diatom abundance become two excellent proxies within a multiple proxy data set including magnetic susceptibility, lithogenic flux, pollen-spore composition changes, and diatom assemblage changes.
    • (1991) Nature , vol.349 , pp. 665
    • Weiss, R.F.1    Carmack, E.C.2    Koropalov, V.M.3
  • 25
    • 84994984138 scopus 로고
    • As demonstrated by A. A. Prokopenko [thesis, University of South Carolina, Columbia (1997)], the link between the biogenic silica flux to the bottom rests on the concept of hydrodynamic limitation of diatom production in Lake Baikal, which relates diatom blooms occurring under the ice in spring to high turbulence of upper layer waters. Because of the turbulence, diatoms do not sink from the trophogenic layer. The lower boundary for the upper mixed waters is the layer of mesothermal maximum of density existing during winter-spring stratification at 200 to 300 m in Lake Baikal [R. F. Weiss, E. C. Carmack, V. M. Koropalov, Nature 349, 665 (1991)]. Similar conditions do not occur in other seasons, and that is why as soon as the ice melts and the water column thermally restructures, the bloom ceases. Long-term insolation changes control the heat balance of the water column, and during glacial periods, when the depth of mesothermal maximum of water density deepens to 500 m, the diatom blooms do not occur, and production between glacial and interglacial periods changes by up to two to three orders of magnitude [M. N. Shimaraev, N. G. Granin, A. A. Zhdanov, Limnol. Oceanogr. 38, 1068 (1993)] in response to insolation orbital forcing. Through this model, biogenic silica and diatom abundance become two excellent proxies within a multiple proxy data set including magnetic susceptibility, lithogenic flux, pollen-spore composition changes, and diatom assemblage changes.
    • (1993) Limnol. Oceanogr. , vol.38 , pp. 1068
    • Shimaraev, M.N.1    Granin, N.G.2    Zhdanov, A.A.3
  • 29
    • 1842300015 scopus 로고    scopus 로고
    • thesis, University of South Carolina, Columbia
    • E. B. Karabanov, thesis, University of South Carolina, Columbia (1997).
    • (1997)
    • Karabanov, E.B.1
  • 33
    • 0027098780 scopus 로고
    • Lake Baikal Paleoclimate Project Members, Eos 73, 457 (1992); S. M. Colman et al., Quat. Sci. Rev. 15, 669 (1996); J. A. Peck, J. W. King, S. M. Colman, V. A. Kravchinsky, J. Geophys. Res. 101, 11365 (1996).
    • (1992) Eos , vol.73 , pp. 457
  • 34
    • 0030302644 scopus 로고    scopus 로고
    • Lake Baikal Paleoclimate Project Members, Eos 73, 457 (1992); S. M. Colman et al., Quat. Sci. Rev. 15, 669 (1996); J. A. Peck, J. W. King, S. M. Colman, V. A. Kravchinsky, J. Geophys. Res. 101, 11365 (1996).
    • (1996) Quat. Sci. Rev. , vol.15 , pp. 669
    • Colman, S.M.1
  • 36
    • 0029515401 scopus 로고
    • S. M. Colman et al., Nature 378, 769 (1995).
    • (1995) Nature , vol.378 , pp. 769
    • Colman, S.M.1
  • 37
    • 1842290531 scopus 로고    scopus 로고
    • note
    • Lake Baikal's geographic position in the largest continental interior of the world, unaffected by the type of large-scale glacial ice sheets that greatly disturbed sediments at similar latitudes on North America, Europe, and western and far eastern Siberia, makes it an ideal sedimentary archive in the International Geosphere-Biosphere Program Pole-Equator-Pole (PEP-II) transect through Asia as part of the Past Global Changes (PAGES) program. The purpose of the PAGES PEP transects is to construct a global network of sites on each of the continents that is analogous in some ways to the available array of deep-sea sites. In the case of the PEP sites, potential archives are tied to specific features and boundary conditions of the atmosphere-hydrosphere-cryosphere system. Lake Baikal is positioned to determine the expansion of the Siberian high-pressure system, incursions of the Asian monsoon, and moisture transport emanating from the Barents Sea and other parts of the Arctic.
  • 38
    • 1842369251 scopus 로고    scopus 로고
    • note
    • The BDP-96 Leg II drill site is located at 53°41′48″N, 108°21′06″E. An APC was used to drill in 321 m of water where multichannel seismic reflection profiles showed thick and continuous sedimentary sequences. The APC cores were retrieved in 2-m-long sections in 58-mm-inside diameter plastic liners.
  • 39
    • 1842288762 scopus 로고    scopus 로고
    • note
    • 3 subsamples with a stepwise, alternating-field demagnetization, which indicated that a viscous remanence component was removed at demagnetizing fields between 2.5 and 5 mT.
  • 42
    • 1842336447 scopus 로고    scopus 로고
    • note
    • Just as the average diatom content of the silica-poor clays increases downcore, indicating warming, so does the character of the coarse material: In the upper 60 m, the coarse material, although still rare, is more angular as contrasted with the more rounded grains in the lower part between 115 and 192 m. In addition, rare coarse sand lenses occur in the upper 60 m, typical of glacial ice-rafted material found in glacial sediments in other studies of piston cores (19, 22).
  • 46
    • 1842374627 scopus 로고    scopus 로고
    • note
    • Spectral analyses were performed with the Arrand program. The evolutive spectra analyses (Fig. 2) were performed with a sliding 400-ky window offset by 100 ky, whereas the spectra shown in Fig. 3, E through H, were obtained on the data set spanning the entire 800-ky period.
  • 47
    • 0000154809 scopus 로고
    • 18O (31). The initial coherence C between the two records (C = 0.23) attained a high degree of coherence (C = 0.65) and 43% shared variance after inverse correlation with four coefficients. The mapping function resulting from this correlation (Fig. 1H) shows no sign of major unconformities or of excessive correlation. The biogenic silica analytical method was modified from (42).
    • (1982) J. Geophys. Res. , vol.87 , pp. 4807
    • Martinson, D.G.1    Menke, W.2    Stoffa, P.3
  • 49
    • 0022174277 scopus 로고
    • T. J. Crowley, D. A. Short, J. G. Mengel, G. R. North, Science 231, 579 (1986); W. T. Hyde and W. R. Peltier, J. Atmos. Sci. 42, 2170 (1984).
    • (1984) J. Atmos. Sci. , vol.42 , pp. 2170
    • Hyde, W.T.1    Peltier, W.R.2
  • 50
    • 0027091156 scopus 로고
    • J. Imbrie et al., Paleoceanography 7, 701 (1992); J. Imbrie et al., ibid. 8, 699 (1993).
    • (1992) Paleoceanography , vol.7 , pp. 701
    • Imbrie, J.1
  • 51
    • 84977318711 scopus 로고
    • J. Imbrie et al., Paleoceanography 7, 701 (1992); J. Imbrie et al., ibid. 8, 699 (1993).
    • (1993) Paleoceanography , vol.8 , pp. 699
    • Imbrie, J.1
  • 57
    • 1842404961 scopus 로고    scopus 로고
    • note
    • We thank the Leg II Scientific Drilling Team led by D. Lykov, V. Gelety, G. Kalmychkov, and A. Goreglyad; Captain M. I. Kazakov and the crew of the BDP support ship Ulan Ude; T. B. Bunaeva and M. Khomuva for their linguistic help; and the Siberian Branch of Russian Academy of Science and the Samuel Freeman Charitable Trust (W. Murray) for purchasing the support ship Ulan Ude for Baikal drilling. Supported by NSF grants EAR-9317204 and EAR 94-13957 (D.F.W.), the Russian Ministry of Science (M.I.K.), the Science and Technology Agency of Japan (T. Kawai), and the Alfred Wegener Institute (H. Oberhansli). Biogenic silica data are from the Institute of Geochemistry.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.