-
1
-
-
0023641562
-
-
J. B. Pollack, J. F. Kasting, S. M. Richardson, K. Poliakoff, Icarus 71, 203 (1987); F. P. Fanale, S. E. Postawko, J. B. Pollack, M. H. Carr, R. O. Pepin, in Mars, H. H. Kieffer, B. M. Jakosky, C. W. Snyder, S. M. Matthews, Eds. (Univ. of Arizona Press, Tucson, AZ, 1992), pp. 1135-1179.
-
(1987)
Icarus
, vol.71
, pp. 203
-
-
Pollack, J.B.1
Kasting, J.F.2
Richardson, S.M.3
Poliakoff, K.4
-
2
-
-
0002003378
-
-
H. H. Kieffer, B. M. Jakosky, C. W. Snyder, S. M. Matthews, Eds. Univ. of Arizona Press, Tucson, AZ
-
J. B. Pollack, J. F. Kasting, S. M. Richardson, K. Poliakoff, Icarus 71, 203 (1987); F. P. Fanale, S. E. Postawko, J. B. Pollack, M. H. Carr, R. O. Pepin, in Mars, H. H. Kieffer, B. M. Jakosky, C. W. Snyder, S. M. Matthews, Eds. (Univ. of Arizona Press, Tucson, AZ, 1992), pp. 1135-1179.
-
(1992)
Mars
, pp. 1135-1179
-
-
Fanale, F.P.1
Postawko, S.E.2
Pollack, J.B.3
Carr, M.H.4
Pepin, R.O.5
-
5
-
-
0028975520
-
-
D. P. Whitmire, L. R. Doyle, R. T. Reynolds, J. J. Matese, J. Geophys. Res. 100, 5457 (1995).
-
(1995)
J. Geophys. Res.
, vol.100
, pp. 5457
-
-
Whitmire, D.P.1
Doyle, L.R.2
Reynolds, R.T.3
Matese, J.J.4
-
9
-
-
0024839546
-
-
O. B. Toon, C. P. McKay, T. P. Ackerman, K. Santhanam, ibid. 94, 16287 (1989).
-
(1989)
J. Geophys. Res.
, vol.94
, pp. 16287
-
-
Toon, O.B.1
McKay, C.P.2
Ackerman, T.P.3
Santhanam, K.4
-
10
-
-
15644370457
-
-
note
-
Mie theory assumes spherical particles. Nonsphericity of ice particles affects scattering asymmetry. However even for Earth cirrus clouds, where much is known about crystal shape, Mie theory is commonly used because the associated errors are subsidiary to other poorly represented aspects of cloud physics (10). For early Mars, where hardly anything is known about the crystal growth habits, there is even less basis for going beyond Mie theory.
-
-
-
-
11
-
-
0025621744
-
-
G. L. Stephens, S.-C. Tsay, P. W. Stackhouse, P. J. Flatau, J. Atmos. Sci. 47, 1742 (1990); E. J. Jensen, S. Kinne, O. B. Toon, Geophys. Res. Lett. 21, 2023 (1994).
-
(1990)
J. Atmos. Sci.
, vol.47
, pp. 1742
-
-
Stephens, G.L.1
Tsay, S.-C.2
Stackhouse, P.W.3
Flatau, P.J.4
-
12
-
-
0028563566
-
-
G. L. Stephens, S.-C. Tsay, P. W. Stackhouse, P. J. Flatau, J. Atmos. Sci. 47, 1742 (1990); E. J. Jensen, S. Kinne, O. B. Toon, Geophys. Res. Lett. 21, 2023 (1994).
-
(1994)
Geophys. Res. Lett.
, vol.21
, pp. 2023
-
-
Jensen, E.J.1
Kinne, S.2
Toon, O.B.3
-
13
-
-
15644368454
-
-
note
-
2 ice cloud temperatures is lower than for the air in Earth's cirrus clouds.
-
-
-
-
17
-
-
33845720921
-
-
J. B. Pollack et al., Icarus 103, 1 (1993).
-
(1993)
Icarus
, vol.103
, pp. 1
-
-
Pollack, J.B.1
-
21
-
-
0001187311
-
-
2 condensation. Rather than adopting the isothermal-stratosphere approach used in (2), we used a time-stepping scheme similar to that in S. Manabe and R. T. Wetherald, [J. Atmos. Sci. 24, 241 (1967)], in which the model is integrated as an initial value problem until it reaches equilibrium. Convergence to equilibrium was reliable but typically required several hundred time steps even when adaptively adjusted time-stepping was used to accelerate convergence. In contrast, the Newton's method iteration, when it works, converges in a dozen or fewer iterations.
-
(1967)
J. Atmos. Sci.
, vol.24
, pp. 241
-
-
Manabe, S.1
Wetherald, R.T.2
-
22
-
-
84984068424
-
-
Moisture affects both IR opacity and lapse rate. In our "dry" calculation, we zeroed out the radiative effects of water vapor but still used the moist adiabat for the tropospheric temperature profile. This corresponds to the typical practice in radiative-convective modeling of using the moist adiabat even in highly subsaturated conditions, as in (2). On Earth, it is known that a moist adiabat can be maintained even if the relative humidity is low almost everywhere in the atmosphere [K. A. Emanuel, J. D. Neelin, C. S. Bretherton, Q. J. R. Meteorol. Soc. 120, 1111 (1994); K. M. Xu and K. A. Emanuel, Mon. Weather Rev. 117,1471 (1989)]. Our use of the moist adiabat is a conservative choice from the standpoint of surface warming. A totally dry planet would likely adjust to the dry adiabat, which is steeper and would yield slightly greater surface temperatures than the "dry" case we show.
-
(1994)
Q. J. R. Meteorol. Soc.
, vol.120
, pp. 1111
-
-
Emanuel, K.A.1
Neelin, J.D.2
Bretherton, C.S.3
-
23
-
-
0024880172
-
-
Moisture affects both IR opacity and lapse rate. In our "dry" calculation, we zeroed out the radiative effects of water vapor but still used the moist adiabat for the tropospheric temperature profile. This corresponds to the typical practice in radiative-convective modeling of using the moist adiabat even in highly subsaturated conditions, as in (2). On Earth, it is known that a moist adiabat can be maintained even if the relative humidity is low almost everywhere in the atmosphere [K. A. Emanuel, J. D. Neelin, C. S. Bretherton, Q. J. R. Meteorol. Soc. 120, 1111 (1994); K. M. Xu and K. A. Emanuel, Mon. Weather Rev. 117,1471 (1989)]. Our use of the moist adiabat is a conservative choice from the standpoint of surface warming. A totally dry planet would likely adjust to the dry adiabat, which is steeper and would yield slightly greater surface temperatures than the "dry" case we show.
-
(1989)
Mon. Weather Rev.
, vol.117
, pp. 1471
-
-
Xu, K.M.1
Emanuel, K.A.2
-
24
-
-
15644381875
-
-
note
-
-2, resulting in a 1.5 K surface warming. However, the effect of the water ice particles depends on their temperature. A lower, thicker water cloud would slightly cool the surface.
-
-
-
-
28
-
-
15644374587
-
-
note
-
We thank J. Kasting for lending us his model and for helpful comments and suggestions; and J.-L. Dufresne, R. Fournier, C. McKay, and B. Weare for their advice. R.T.P. gratefully acknowledges the support of the John Simon Guggenheim Foundation and of NSF (grant ATM-9505190).
-
-
-
|