메뉴 건너뛰기




Volumn 276, Issue 5314, 1997, Pages 934-937

North and northeast Greenland ice discharge from satellite radar interferometry

Author keywords

[No Author keywords available]

Indexed keywords

ICE;

EID: 0030620992     PISSN: 00368075     EISSN: None     Source Type: Journal    
DOI: 10.1126/science.276.5314.934     Document Type: Article
Times cited : (114)

References (44)
  • 1
    • 0024897392 scopus 로고
    • R. J. Fulton, Ed. Geological Survey of Canada, Geology of Canada, chap. 14
    • N. Reeh, in Quaternary Geology of Canada and Greenland, R. J. Fulton, Ed. (Geological Survey of Canada, Geology of Canada, 1989), chap. 14, pp. 793-822; C. S. Benson, U.S. Army Cold Reg. Res. Eng. Lab. Rep. 70 (Hanover, NH, 1962); A. Weidick, Gletscher-Hydrol. Medd. 85, (1985); H. Bader, U.S. Army Cold Reg. Res. Eng. Lab. Rep. I-B2 (Hanover, NH, 1961); F. Loewe, Beitr. Geophys. 46, 317 (1936).
    • (1989) Quaternary Geology of Canada and Greenland , pp. 793-822
    • Reeh, N.1
  • 2
    • 0024897392 scopus 로고
    • Hanover, NH
    • N. Reeh, in Quaternary Geology of Canada and Greenland, R. J. Fulton, Ed. (Geological Survey of Canada, Geology of Canada, 1989), chap. 14, pp. 793-822; C. S. Benson, U.S. Army Cold Reg. Res. Eng. Lab. Rep. 70 (Hanover, NH, 1962); A. Weidick, Gletscher-Hydrol. Medd. 85, (1985); H. Bader, U.S. Army Cold Reg. Res. Eng. Lab. Rep. I-B2 (Hanover, NH, 1961); F. Loewe, Beitr. Geophys. 46, 317 (1936).
    • (1962) U.S. Army Cold Reg. Res. Eng. Lab. Rep. 70
    • Benson, C.S.1
  • 3
    • 0024897392 scopus 로고
    • N. Reeh, in Quaternary Geology of Canada and Greenland, R. J. Fulton, Ed. (Geological Survey of Canada, Geology of Canada, 1989), chap. 14, pp. 793-822; C. S. Benson, U.S. Army Cold Reg. Res. Eng. Lab. Rep. 70 (Hanover, NH, 1962); A. Weidick, Gletscher-Hydrol. Medd. 85, (1985); H. Bader, U.S. Army Cold Reg. Res. Eng. Lab. Rep. I-B2 (Hanover, NH, 1961); F. Loewe, Beitr. Geophys. 46, 317 (1936).
    • (1985) Gletscher-Hydrol. Medd. , vol.85
    • Weidick, A.1
  • 4
    • 0024897392 scopus 로고
    • Hanover, NH
    • N. Reeh, in Quaternary Geology of Canada and Greenland, R. J. Fulton, Ed. (Geological Survey of Canada, Geology of Canada, 1989), chap. 14, pp. 793-822; C. S. Benson, U.S. Army Cold Reg. Res. Eng. Lab. Rep. 70 (Hanover, NH, 1962); A. Weidick, Gletscher-Hydrol. Medd. 85, (1985); H. Bader, U.S. Army Cold Reg. Res. Eng. Lab. Rep. I-B2 (Hanover, NH, 1961); F. Loewe, Beitr. Geophys. 46, 317 (1936).
    • (1961) U.S. Army Cold Reg. Res. Eng. Lab. Rep. I-B2
    • Bader, H.1
  • 5
    • 0024897392 scopus 로고
    • N. Reeh, in Quaternary Geology of Canada and Greenland, R. J. Fulton, Ed. (Geological Survey of Canada, Geology of Canada, 1989), chap. 14, pp. 793-822; C. S. Benson, U.S. Army Cold Reg. Res. Eng. Lab. Rep. 70 (Hanover, NH, 1962); A. Weidick, Gletscher-Hydrol. Medd. 85, (1985); H. Bader, U.S. Army Cold Reg. Res. Eng. Lab. Rep. I-B2 (Hanover, NH, 1961); F. Loewe, Beitr. Geophys. 46, 317 (1936).
    • (1936) Beitr. Geophys. , vol.46 , pp. 317
    • Loewe, F.1
  • 8
    • 0007431704 scopus 로고
    • Seattle, WA, 13 to 15 September 1984 National Academy Press, Washington, DC
    • 2-Induced Climatic Change, Seattle, WA, 13 to 15 September 1984 (National Academy Press, Washington, DC, 1985), pp. 155-171.
    • (1985) 2-Induced Climatic Change , pp. 155-171
    • Reeh, N.1
  • 9
    • 0012427603 scopus 로고
    • M. Carbonnell and A. Bauer, Medd. Groenl. 173, 1 (1968); R. C. Kollmeyer, Cold Reg. Sci. Technol. 1, 175 (1980).
    • (1968) Medd. Groenl. , vol.173 , pp. 1
    • Carbonnell, M.1    Bauer, A.2
  • 12
    • 85069239467 scopus 로고
    • A. Higgins, Groenl. Geol. Undersoegelse 140, 1 (1988); Polarforschung 60, 1 (1990).
    • (1990) Polarforschung , vol.60 , pp. 1
  • 13
    • 0002810584 scopus 로고
    • R. F. Peel, L. F. Curtis, E. C. Barret, Eds. Colston Papers, Bristol, UK
    • P. Gudmandsen, in Remote Sensing of the Terrestrial Environment 28, R. F. Peel, L. F. Curtis, E. C. Barret, Eds. (Colston Papers, Bristol, UK, 1977), pp. 198-211.
    • (1977) Remote Sensing of the Terrestrial Environment 28 , pp. 198-211
    • Gudmandsen, P.1
  • 14
    • 0021600891 scopus 로고
    • The grounding line may be located from an examination of small fractures at the surface of a glacier caused by the tidal displacements [S. N. Stephenson, Ann. Glaciol. 5, 165 (1984)], or using a radio echo sounder [ R. W. Jacobel, A. E. Robinson, R. A. Bindschadler, ibid. 20, 39 (1994)]. The limit of tidal flexing is precisely found with global positioning system (GPS) surveys and tiltmeters [ D. G. Vaughan, ibid., p. 372; A. M. Smith, J. Glaciol. 37, 51 (1991)]. The above techniques, however, are limited in spatial sampling. Visible imagery [ C. Swithinbank, K. Brunk, J. Sievers, Ann. Glaciol. 11, 150 (1988)] and radar altimetry [ R. H. Thomas, T. V. Martin, H. J. Zwally, ibid. 4, 283 (1983)] provide a large-scale, uniform sampling view of the grounding zone, but their precision is much less than that of GPS techniques.
    • (1984) Ann. Glaciol. , vol.5 , pp. 165
    • Stephenson, S.N.1
  • 15
    • 0028572114 scopus 로고
    • The grounding line may be located from an examination of small fractures at the surface of a glacier caused by the tidal displacements [S. N. Stephenson, Ann. Glaciol. 5, 165 (1984)], or using a radio echo sounder [ R. W. Jacobel, A. E. Robinson, R. A. Bindschadler, ibid. 20, 39 (1994)]. The limit of tidal flexing is precisely found with global positioning system (GPS) surveys and tiltmeters [ D. G. Vaughan, ibid., p. 372; A. M. Smith, J. Glaciol. 37, 51 (1991)]. The above techniques, however, are limited in spatial sampling. Visible imagery [ C. Swithinbank, K. Brunk, J. Sievers, Ann. Glaciol. 11, 150 (1988)] and radar altimetry [ R. H. Thomas, T. V. Martin, H. J. Zwally, ibid. 4, 283 (1983)] provide a large-scale, uniform sampling view of the grounding zone, but their precision is much less than that of GPS techniques.
    • (1994) Ann. Glaciol. , vol.20 , pp. 39
    • Jacobel, R.W.1    Robinson, A.E.2    Bindschadler, R.A.3
  • 16
    • 0004344606 scopus 로고    scopus 로고
    • The grounding line may be located from an examination of small fractures at the surface of a glacier caused by the tidal displacements [S. N. Stephenson, Ann. Glaciol. 5, 165 (1984)], or using a radio echo sounder [ R. W. Jacobel, A. E. Robinson, R. A. Bindschadler, ibid. 20, 39 (1994)]. The limit of tidal flexing is precisely found with global positioning system (GPS) surveys and tiltmeters [ D. G. Vaughan, ibid., p. 372; A. M. Smith, J. Glaciol. 37, 51 (1991)]. The above techniques, however, are limited in spatial sampling. Visible imagery [ C. Swithinbank, K. Brunk, J. Sievers, Ann. Glaciol. 11, 150 (1988)] and radar altimetry [ R. H. Thomas, T. V. Martin, H. J. Zwally, ibid. 4, 283 (1983)] provide a large-scale, uniform sampling view of the grounding zone, but their precision is much less than that of GPS techniques.
    • Ann. Glaciol. , pp. 372
    • Vaughan, D.G.1
  • 17
    • 0026299131 scopus 로고
    • The grounding line may be located from an examination of small fractures at the surface of a glacier caused by the tidal displacements [S. N. Stephenson, Ann. Glaciol. 5, 165 (1984)], or using a radio echo sounder [ R. W. Jacobel, A. E. Robinson, R. A. Bindschadler, ibid. 20, 39 (1994)]. The limit of tidal flexing is precisely found with global positioning system (GPS) surveys and tiltmeters [ D. G. Vaughan, ibid., p. 372; A. M. Smith, J. Glaciol. 37, 51 (1991)]. The above techniques, however, are limited in spatial sampling. Visible imagery [ C. Swithinbank, K. Brunk, J. Sievers, Ann. Glaciol. 11, 150 (1988)] and radar altimetry [ R. H. Thomas, T. V. Martin, H. J. Zwally, ibid. 4, 283 (1983)] provide a large-scale, uniform sampling view of the grounding zone, but their precision is much less than that of GPS techniques.
    • (1991) J. Glaciol. , vol.37 , pp. 51
    • Smith, A.M.1
  • 18
    • 0343870551 scopus 로고
    • The grounding line may be located from an examination of small fractures at the surface of a glacier caused by the tidal displacements [S. N. Stephenson, Ann. Glaciol. 5, 165 (1984)], or using a radio echo sounder [ R. W. Jacobel, A. E. Robinson, R. A. Bindschadler, ibid. 20, 39 (1994)]. The limit of tidal flexing is precisely found with global positioning system (GPS) surveys and tiltmeters [ D. G. Vaughan, ibid., p. 372; A. M. Smith, J. Glaciol. 37, 51 (1991)]. The above techniques, however, are limited in spatial sampling. Visible imagery [ C. Swithinbank, K. Brunk, J. Sievers, Ann. Glaciol. 11, 150 (1988)] and radar altimetry [ R. H. Thomas, T. V. Martin, H. J. Zwally, ibid. 4, 283 (1983)] provide a large-scale, uniform sampling view of the grounding zone, but their precision is much less than that of GPS techniques.
    • (1988) Ann. Glaciol. , vol.11 , pp. 150
    • Swithinbank, C.1    Brunk, K.2    Sievers, J.3
  • 19
    • 0020891258 scopus 로고
    • The grounding line may be located from an examination of small fractures at the surface of a glacier caused by the tidal displacements [S. N. Stephenson, Ann. Glaciol. 5, 165 (1984)], or using a radio echo sounder [ R. W. Jacobel, A. E. Robinson, R. A. Bindschadler, ibid. 20, 39 (1994)]. The limit of tidal flexing is precisely found with global positioning system (GPS) surveys and tiltmeters [ D. G. Vaughan, ibid., p. 372; A. M. Smith, J. Glaciol. 37, 51 (1991)]. The above techniques, however, are limited in spatial sampling. Visible imagery [ C. Swithinbank, K. Brunk, J. Sievers, Ann. Glaciol. 11, 150 (1988)] and radar altimetry [ R. H. Thomas, T. V. Martin, H. J. Zwally, ibid. 4, 283 (1983)] provide a large-scale, uniform sampling view of the grounding zone, but their precision is much less than that of GPS techniques.
    • (1983) Ann. Glaciol. , vol.4 , pp. 283
    • Thomas, R.H.1    Martin, T.V.2    Zwally, H.J.3
  • 22
    • 85069246901 scopus 로고    scopus 로고
    • note
    • To locate the grounding line with ERS radar interferometry, we used two interferograms formed by combining ERS image data acquired 1 day apart. A DEM was registered to each interferogram from a knowledge of the radar imaging geometry and the satellite precision orbits. The phase variations associated with surface topography and the interferometric baseline were then automatically removed from the interferograms, leaving only phase variations caused by the glacier deformation over 1 day. This deformation is the combination of a long-term motion under the driving stress procured by gravity, and a short-term vertical motion induced by tidal forcing from the ocean. If the glacier velocity (or gravity term) is continuous and steady throughout the period of observation, the differencing of two such interferograms produces a third interferogram which only contains the tidal signal. It is then possible to locate the limit of tidal flexing, or glacier hinge line, within less than 100 m, across the entire glacier width (10).
  • 25
    • 85069249058 scopus 로고    scopus 로고
    • note
    • i), or 9.115.
  • 29
    • 85069242395 scopus 로고    scopus 로고
    • note
    • Ice flow direction is known within 5°. The line-of-sight interferometric velocity is known within 2 mm/day or 1 m/year. The ERS data had a line-of-sight vector within 30° of the main flow direction.
  • 32
    • 0028895919 scopus 로고
    • C. E. Bøggild, N. Reeh, H. Oerter, Global Planet. Change 9, 79 (1994); T. Konzelmann and R. Braithwaite, J. Glaciol. 41, 174 (1995); T. Hay, Medd. Groenl. 182, 1 (1970).
    • (1995) J. Glaciol. , vol.41 , pp. 174
    • Konzelmann, T.1    Braithwaite, R.2
  • 33
    • 0028323746 scopus 로고
    • C. E. Bøggild, N. Reeh, H. Oerter, Global Planet. Change 9, 79 (1994); T. Konzelmann and R. Braithwaite, J. Glaciol. 41, 174 (1995); T. Hay, Medd. Groenl. 182, 1 (1970).
    • (1970) Medd. Groenl. , vol.182 , pp. 1
    • Hay, T.1
  • 35
    • 0026076697 scopus 로고
    • S. S. Jacobs, H. H. Helmer, C. S. M. Doake, A. Jenkins, R. M. Frolich, J. Glaciol. 38, 375 (1992); A. Jenkins and C. S. M. Doake, J. Geophys. Res. 96, 791 (1991); D. R. McAyeal, ibid. 89, 597 (1984).
    • (1991) J. Geophys. Res. , vol.96 , pp. 791
    • Jenkins, A.1    Doake, C.S.M.2
  • 36
    • 0021639682 scopus 로고
    • S. S. Jacobs, H. H. Helmer, C. S. M. Doake, A. Jenkins, R. M. Frolich, J. Glaciol. 38, 375 (1992); A. Jenkins and C. S. M. Doake, J. Geophys. Res. 96, 791 (1991); D. R. McAyeal, ibid. 89, 597 (1984).
    • (1984) J. Geophys. Res. , vol.89 , pp. 597
    • McAyeal, D.R.1
  • 38
    • 0030430619 scopus 로고    scopus 로고
    • S. S. Jacobs, H. H. Helmer, A. Jenkins, Geophys. Res. Lett. 23, 957 (1996); A. M. Smith, J. Geophys. Res. 101, 22749 (1996).
    • (1996) J. Geophys. Res. , vol.101 , pp. 22749
    • Smith, A.M.1
  • 41
    • 0000518541 scopus 로고
    • G. Holdsworth, J. Glaciol. 6, 385 (1969); Ann. Geophys. 33, 133 (1977).
    • (1969) J. Glaciol. , vol.6 , pp. 385
    • Holdsworth, G.1
  • 42
    • 0000259961 scopus 로고
    • G. Holdsworth, J. Glaciol. 6, 385 (1969); Ann. Geophys. 33, 133 (1977).
    • (1977) Ann. Geophys. , vol.33 , pp. 133
  • 44
    • 85069253299 scopus 로고    scopus 로고
    • note
    • We thank G. Duchossois, G. Kohlhammer, and the European Space Agency for providing radar data; R. H. Thomas for useful discussions; and C. Werner for providing a synthetic-aperture radar processor. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.