-
1
-
-
1842347671
-
-
J. T. Houghton et al., Eds. Cambridge Univ. Press, Cambridge, chap. 2
-
Intergovernmental Panel on Climate Change, Climate Change 1994: Radiative Forcing of Climate Change, J. T. Houghton et al., Eds. (Cambridge Univ. Press, Cambridge, 1995), chap. 2.
-
(1995)
Climate Change 1994: Radiative Forcing of Climate Change
-
-
-
3
-
-
1842342869
-
-
note
-
The troposphere is the part of the atmosphere that is generally characterized by sharply decreasing temperatures with increasing altitude, roughly 6°C/km. Its thickness ranges from roughly 8 km in higher latitudes to 16 km in the tropics. Because the cloudless atmosphere is nearly transparent to incoming solar radiation, the troposphere is essentially heated from below, with dynamically induced vertical mixing shaping the vertical temperature structure. The upper limit of the troposphere is conventionally called the tropopause.
-
-
-
-
4
-
-
1842272751
-
-
note
-
The stratosphere begins at the tropopause and extends to an altitude of about 50 km. Its temperature slowly increases with altitude, mainly resulting from the absorption of solar ultraviolet radiation by ozone.
-
-
-
-
5
-
-
1842276705
-
-
note
-
P is the specific heat of air at constant pressure. Under these idealized circumstances, the first law of thermodynamics adopts the simple form dΘ/dt = O; that is, potential temperature is conserved following an air parcel over time t. In the atmosphere, Θ generally increases with altitude, markedly so in the stratosphere. Long-term transport between the troposphere and stratosphere must be tightly constrained by the magnitude of net diabatic processes, ultimately of dynamical origin, moving air across surfaces of constant potential temperature. Static stability is defined here for convenience as the vertical pressure gradient of potential temperature (-∂θ/∂P) and is a measure of the resistance of air to vertical displacement. Use of potential temperature as a vertical coordinate allows straightforward use of the radiosonde-based meteorological network of wind, temperature, and pressure data to calculate 3D air trajectories in the troposphere, to the extent that the air moves nearly adiabatically. This substitution is a powerful diagnostic tool for addressing tracer movements, because it evades the problem that standard meteorological measurements do not measure vertical velocity directly (8-11).
-
-
-
-
7
-
-
1842344755
-
-
note
-
Potential vorticity is, to an excellent approximation, the product of the absolute vorticity, measured on a surface of constant potential temperature, and the static stability (5). It corresponds physically to the spin angular momentum of a fluid parcel. Absolute vorticity is the sum of the vertical component of the local vorticity and the local value of the vorticity of Earth's solid-body rotation (twice Earth's angular velocity times the sine of the latitude). Potential vorticity is conserved following a fluid parcel if the flow is frictionless and adiabatic (confined to a potential-temperature surface). Strong gradients of potential vorticity imply barriers to horizontal transport due to strong horizontal gradients in static stability and absolute vorticity, such as across atmospheric jet streams. For discussions of the physical significance of potential temperature, absolute vorticity, and potential vorticity, see (31).
-
-
-
-
9
-
-
0001098180
-
-
R. J. Reed and F. Sanders, J. Meteorol. 10, 338 (1953); R. J. Reed, ibid. 12, 226 (1955).
-
(1955)
J. Meteorol.
, vol.12
, pp. 226
-
-
Reed, R.J.1
-
13
-
-
0000232508
-
-
E. R. Reiter and J. D. Mahlman, J. Geophys. Res. 70, 4501 (1965); E. F. Danielsen, J. Atmos. Sci. 25, 502 (1968).
-
(1968)
J. Atmos. Sci.
, vol.25
, pp. 502
-
-
Danielsen, E.F.1
-
15
-
-
1842383408
-
-
P. F. Gustafson, S. S. Brar, M. A. Kerrigan, Science 133, 460 (1961); J. F. Bleichrodt, J. Blok, R. H. Dekker, J. Geophys. Res. 66, 135 (1961).
-
(1961)
Science
, vol.133
, pp. 460
-
-
Gustafson, P.F.1
Brar, S.S.2
Kerrigan, M.A.3
-
16
-
-
1842383408
-
-
P. F. Gustafson, S. S. Brar, M. A. Kerrigan, Science 133, 460 (1961); J. F. Bleichrodt, J. Blok, R. H. Dekker, J. Geophys. Res. 66, 135 (1961).
-
(1961)
J. Geophys. Res.
, vol.66
, pp. 135
-
-
Bleichrodt, J.F.1
Blok, J.2
Dekker, R.H.3
-
18
-
-
0016536890
-
-
E. R. Reiter, Rev. Geophys. Space Phys. 13, 459 (1975); C. Appenzeller and J. R. Holton, J. Geophys. Res. 101, 15,071 (1996).
-
(1975)
Rev. Geophys. Space Phys.
, vol.13
, pp. 459
-
-
Reiter, E.R.1
-
20
-
-
0017022486
-
-
D. G. Andrews and M. E. McIntyre, J. Atmos. Sci. 33, 2031 (1976); J. Fluid Mech. 89, 609 (1978); M. E. McIntyre, Philos. Trans. R. Soc. London Ser. A 296, 129 (1980).
-
(1976)
J. Atmos. Sci.
, vol.33
, pp. 2031
-
-
Andrews, D.G.1
McIntyre, M.E.2
-
21
-
-
0018259342
-
-
D. G. Andrews and M. E. McIntyre, J. Atmos. Sci. 33, 2031 (1976); J. Fluid Mech. 89, 609 (1978); M. E. McIntyre, Philos. Trans. R. Soc. London Ser. A 296, 129 (1980).
-
(1978)
J. Fluid Mech.
, vol.89
, pp. 609
-
-
-
22
-
-
0017022486
-
-
D. G. Andrews and M. E. McIntyre, J. Atmos. Sci. 33, 2031 (1976); J. Fluid Mech. 89, 609 (1978); M. E. McIntyre, Philos. Trans. R. Soc. London Ser. A 296, 129 (1980).
-
(1980)
Philos. Trans. R. Soc. London Ser. A
, vol.296
, pp. 129
-
-
McIntyre, M.E.1
-
23
-
-
0004248899
-
-
Intl. Geophys. Ser. 40, Academic Press, Orlando, FL
-
D. G. Andrews, J. R. Holton, C. B. Leovy, Middle Atmospheric Dynamics (Intl. Geophys. Ser. 40, Academic Press, Orlando, FL, 1987).
-
(1987)
Middle Atmospheric Dynamics
-
-
Andrews, D.G.1
Holton, J.R.2
Leovy, C.B.3
-
27
-
-
1842269818
-
-
note
-
A radiatlve-convective model conventionally calculates the vertical temperature profile that is consistent with a local balance between the net solar plus infrared radiative heating and a simplified vertical mixing by smaller, cloud-scale processes.
-
-
-
-
28
-
-
0019110544
-
-
S. B. Fels, J. D. Mahlman, M. D. Schwarzkopf, R. W. Sinclair, J. Atmos. Sci. 37, 2265 (1980).
-
(1980)
J. Atmos. Sci.
, vol.37
, pp. 2265
-
-
Fels, S.B.1
Mahlman, J.D.2
Schwarzkopf, M.D.3
Sinclair, R.W.4
-
29
-
-
0026295396
-
-
P. H. Haynes, C. J. Marks, M. E McIntyre, T. G. Shepherd, K. P. Shine, ibid. 48, 651 (1991).
-
(1991)
J. Atmos. Sci.
, vol.48
, pp. 651
-
-
Haynes, P.H.1
Marks, C.J.2
McIntyre, M.E.3
Shepherd, T.G.4
Shine, K.P.5
-
31
-
-
0022836407
-
-
J. D. Mahlman, H. Levy II., W. J. Moxim, J. Geophys. Res. 91, 2687 (1986); J. R. Holton, ibid., p. 2681.
-
(1986)
J. Geophys. Res.
, vol.91
, pp. 2687
-
-
Mahlman, J.D.1
Levy II, H.2
Moxim, W.J.3
-
32
-
-
0022836407
-
-
J. D. Mahlman, H. Levy II., W. J. Moxim, J. Geophys. Res. 91, 2687 (1986); J. R. Holton, ibid., p. 2681.
-
J. Geophys. Res.
, pp. 2681
-
-
Holton, J.R.1
-
34
-
-
0027795726
-
-
M. E. McIntyre and T. N. Palmer, J. Atmos. Terr. Phys. 46, 825 (1984); R. L. Panetta, J. Atmos. Sci. 50, 2073 (1993).
-
(1993)
J. Atmos. Sci.
, vol.50
, pp. 2073
-
-
Panetta, R.L.1
-
38
-
-
1842340931
-
-
note
-
Nitrous oxide is an inert tracer of atmospheric motions in the troposphere and lower stratosphere. It has biological sources at Earth's surface and photochemical destruction sinks above 25-km altitude. Its global atmospheric lifetime is about 120 years. It thus is rather well mixed in the troposphere, but its small variations serve as an excellent tracer of atmospheric motions (Fig. 2).
-
-
-
-
40
-
-
0028837817
-
-
K. Hamilton, R. J. Wilson, J. D. Mahlman, L. J. Umscheid, J. Atmos. Sci. 52, 5 (1995).
-
(1995)
J. Atmos. Sci.
, vol.52
, pp. 5
-
-
Hamilton, K.1
Wilson, R.J.2
Mahlman, J.D.3
Umscheid, L.J.4
-
41
-
-
1842353641
-
-
note
-
Valuable comments and assistance on this manuscript were provided by J. R. Holton, H. Levy II, W. J. Moxim, L. M. Perliski, E. M. Williams, R. J. Wilson, and an anonymous reviewer. Many excellent insights have been provided on aspects of this topic by a variety of valued colleagues. Particularly helpful were the perspective and opinions offered over the past three decades by D. G. Andrews, I. M. Held, J. R. Holton, B. J. Hoskins, M. E. McIntyre, R. A. Plumb, E. R. Reiter, and H. Riehl. This paper is dedicated to the warm personal memories of and the invaluable insights given to me on multiple aspects of this subject by E. F. Danielsen and S. B. Fels, both deceased.
-
-
-
|