-
1
-
-
0001375329
-
A schensted-type correspondence for the symplectic group
-
1. A. Berele, A Schensted-type correspondence for the symplectic group, J. Combin. Theory Ser. A 43 (1986), 320-328.
-
(1986)
J. Combin. Theory Ser. A
, vol.43
, pp. 320-328
-
-
Berele, A.1
-
3
-
-
0004117501
-
-
Dekker, New York
-
3. M. R. Bremner, R. V. Moody, and J. Patera, "Tables of Dominant Weight Multiplicities for Representations of Simple Lie Algebras," Dekker, New York, 1985.
-
(1985)
Tables of Dominant Weight Multiplicities for Representations of Simple Lie Algebras
-
-
Bremner, M.R.1
Moody, R.V.2
Patera, J.3
-
4
-
-
85029964034
-
-
CAN, Amsterdam
-
4. A. Cohen, M. A. A. van Leeuwen, and B. Lisser, "LiE," CAN, Amsterdam, 1992.
-
(1992)
LiE
-
-
Cohen, A.1
Van Leeuwen, M.A.A.2
Lisser, B.3
-
6
-
-
34249963938
-
Crystalizing the q-analog of universal enveloping algebras
-
6. M. Kashiwara, Crystalizing the q-analog of universal enveloping algebras, Comm. Math. Phys. 133 (1990), 249-260.
-
(1990)
Comm. Math. Phys.
, vol.133
, pp. 249-260
-
-
Kashiwara, M.1
-
8
-
-
0000601432
-
Weight multiplicities for the classical groups
-
"Group Theoretical Methods in Physics" (Janner, Jannssen, and Boon, Eds.), Springer-Verlag, New York/Berlin
-
8. R. C. King, Weight multiplicities for the classical groups, in "Group Theoretical Methods in Physics" (Janner, Jannssen, and Boon, Eds.), Lecture Notes in Physics, Vol. 50, Springer-Verlag, New York/Berlin, 1976.
-
(1976)
Lecture Notes in Physics
, vol.50
-
-
King, R.C.1
-
9
-
-
84972578253
-
Permutations, matrices, and generalized Young tableaux
-
9. D. E. Knuth, Permutations, matrices, and generalized Young tableaux, Pacific J. Math. 34 (1970), 709-727.
-
(1970)
Pacific J. Math.
, vol.34
, pp. 709-727
-
-
Knuth, D.E.1
-
11
-
-
0000085407
-
Geometry of G/P, IV
-
Indian Academy of Science
-
11. V. Lakshmibai, C. Musili, and C. S. Seshadri, "Geometry of G/P, IV," Proc. Inc. Acad. Sci., Vol. 88A, pp. 279-362, Indian Academy of Science, 1979.
-
(1979)
Proc. Inc. Acad. Sci.
, vol.88 A
, pp. 279-362
-
-
Lakshmibai, V.1
Musili, C.2
Seshadri, C.S.3
-
14
-
-
0000049326
-
A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras
-
14. P. Littelmann, A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Invent. Math. 116 (1994), 329-346.
-
(1994)
Invent. Math.
, vol.116
, pp. 329-346
-
-
Littelmann, P.1
-
15
-
-
21844525391
-
Paths and root operators in representation theory
-
to appear
-
15. P. Littelmann, Paths and root operators in representation theory, Ann. of Math., to appear.
-
Ann. of Math.
-
-
Littelmann, P.1
-
16
-
-
85029969056
-
Crystal graphs and Young tableaux
-
to appear
-
16. P. Littelmann, Crystal graphs and Young tableaux, J. Algebra, to appear.
-
J. Algebra
-
-
Littelmann, P.1
-
17
-
-
0003360864
-
Canonical bases arising from quantized enveloping algebras, II
-
17. G. Lusztig, Canonical bases arising from quantized enveloping algebras, II, Prog. Theoret. Phys. 102 (1990), 175-201.
-
(1990)
Prog. Theoret. Phys.
, vol.102
, pp. 175-201
-
-
Lusztig, G.1
-
18
-
-
0006661490
-
La correspondance de Robinson
-
Springer-Verlag, New York/Berlin
-
18. M. P. Schützenberger, La correspondance de Robinson, in "Combinatoire de Représentation du Groupe Symmetrique," Lecture Notes in Math., Vol. 579, Springer-Verlag, New York/Berlin, 1976.
-
(1976)
"Combinatoire de Représentation du Groupe Symmetrique," Lecture Notes in Math
, vol.579
-
-
Schützenberger, M.P.1
-
20
-
-
0002987545
-
A Schensted algorithm which models tensor representations of the orthogonal group
-
20. R. A. Proctor, A Schensted algorithm which models tensor representations of the orthogonal group, Canad. J. Math. 42 (1990), 28-49.
-
(1990)
Canad. J. Math.
, vol.42
, pp. 28-49
-
-
Proctor, R.A.1
-
21
-
-
0001525292
-
Orthogonal tableaux and an insertion algorithm for SO(2n + 1)
-
21. S. Sundaram, Orthogonal tableaux and an insertion algorithm for SO(2n + 1), J. Combin. Theory Ser. A 53 (1990), 239-256.
-
(1990)
J. Combin. Theory Ser. A
, vol.53
, pp. 239-256
-
-
Sundaram, S.1
|