-
1
-
-
0000035859
-
Peptide chemistry: Design and synthesis of peptides, conformational analysis and biological functions
-
Tetrahedron-Symposia-in-Print, 31
-
2 Peptide Chemistry: Design and Synthesis of Peptides, Conformational Analysis and Biological Functions; Hruby V. J.; Schwyzer, R., Eds.; Tetrahedron-Symposia-in-Print, 31; Tetrahedron 1988, 44, 661.
-
(1988)
Tetrahedron
, vol.44
, pp. 661
-
-
Hruby, V.J.1
Schwyzer, R.2
-
4
-
-
0028258252
-
-
4 Soloshonok, V. A.; Hayashi, T.; Ishikawa, K.; Nagashima, N. Tetrahedron Lett. 1994, 35, 1055.
-
(1994)
Tetrahedron Lett.
, vol.35
, pp. 1055
-
-
Soloshonok, V.A.1
Hayashi, T.2
Ishikawa, K.3
Nagashima, N.4
-
5
-
-
37049075389
-
-
5 For recent stereoselective approaches to this class of amino acids see: (a) Soloshonok, V. A.; Kukhar', V. P.; Galushko, S. V.; Svistunova, N. Yu.; Avilov, D. V.; Kuz'mina, N. A.; Raevski, N. I.; Struchkov, Yu. T.; Pysarevsky A. P.; Belokon' Yu. N. J. Chem. Soc., Perkin Trans. 1 1993, 3143.
-
(1993)
J. Chem. Soc., Perkin Trans. 1
, vol.1
, pp. 3143
-
-
Soloshonok, V.A.1
Kukhar', V.P.2
Galushko, S.V.3
Svistunova, N.Yu.4
Avilov, D.V.5
Kuz'mina, N.A.6
Raevski, N.I.7
Struchkov, Yu.T.8
Pysarevsky, A.P.9
Belokon', Yu.N.10
-
7
-
-
0029883406
-
-
(c) Soloshonok, V. A.; Avilov, D. V.; Kukhar', V. P. Tetrahedron: Asymmetry 1996, 7, 1547.
-
(1996)
Tetrahedron: Asymmetry
, vol.7
, pp. 1547
-
-
Soloshonok, V.A.1
Avilov, D.V.2
Kukhar', V.P.3
-
8
-
-
85030273658
-
-
note
-
6 Relative trans-configuration of oxazoline 3k was confirmed via its acidic hydrolysis to the corresponding amino acid, (2R*,3R*)-configuration of which was established by comparison with the sample of known absolute stereochemistry; see ref. 5. Similarly, trans-configuration of 3l,m was confirmed. To the rest of oxazolines 3f-j,n-p trans-configuration was assigned on the basis of an apparent similarity of their NMR spectra to the patterns of 3k-m; see ref. 7. In the case of hydrocarbon derivatives 3q,r, relative configuration of the dominant diastereomer has not been established, but is assumed to be trans on the basis of similarity of their NMR spectra to the patterns of 3f-p, and stereochemical preferences revealed for these reactions.
-
-
-
-
9
-
-
85030279094
-
-
note
-
AB = 11.9 Hz, 2 H), 3.79 (s, 3 H), 4.50 (d, J = 2.0 Hz, 1 H), 6.97 (d, J = 2.0 Hz, 1 H). 3i: 1.56 (s, 3 H), 3.81 (s, 3 H), 4.91 (m, 1 H), 5.73 (d, J = 0.66 Hz, 1 H), 6.98 (d, J = 1.3 Hz, 1 H). 4i: 1.76 (s, 3 H), 3.80 (s, 3 H), 4.56 (m, 1 H), 6.20 (s, 1 H), one resonance is obscured. 3j: 1.75 (s, 3 H), 3.83 (s, 3 H), 5.07 (d, J = 2.0 Hz, 1 H), 7.04 (d, J = 2.0 Hz, 1 H). 3k: 1.51 (s, 3 H), 3.82 (s, 3 H), 4.90 (d, J = 2.0 Hz, 1 H), 6.98 (d, J = 2.0 Hz, 1 H). 3l: 0.84-0.89 (m, 3 H), 1.24-1.41 (m, 10 H), 1.82-2.05 (m, 2 H), 3.81 (s, 3 H), 4.90 (d, J = 2.0 Hz, 1 H), 6.98 (d, J = 2.0 Hz, 1 H). 3m: 0.85-0.90 (m, 3 H), 1.25-1.41 (m, 12 H), 1.82-1.98 (m, 2 H), 3.82 (s, 3 H), 4.91 (d, J = 2.3 Hz, 1 H), 6.99 (d, J = 2.3 Hz, 1 H). 4n: 0.93-2.20 (m, 11 H), 3.78 (s, 3 H), 4.78 (d, J = 2.0 Hz, 1 H), 6.97 (d, J = 2.3 Hz, 1 H). 3o: 3.81 (s, 3 H), 5.10 (d, J = 2.1 Hz, 1 H), 7.08 (d, J = 2.1 Hz, 1 H), 7.26-7.48 (m, 5 H), 3p: 0.81-0.88 (m, 3 H), 1.22-1.40 (m, 8 H), 1.83-2.07 (m, 2 H), 3.81 (s, 3 H), 4.99 (d, J = 2.0 Hz, 1 H), 7.07 (d, J = 2.0 Hz, 1 H). 3q: 0.97 (t, J = 7.6 Hz, 3 H), 1.27 (s, 3 H), 1.79 (q.d, J = 7.6 Hz, J = 1.8 Hz, 2H), 3.76 (s, 3 H), 4.42 (d, J = 2.0 Hz, 1 H), 6.92 (m, 1 H). 4q: 0.94 (t, J = 7.6 Hz, 3 H), 1.48 (s, 3 H), 1.65 (m, 2H), 3.75 (s, 3 H), 4.40 (d, J = 2.2 Hz, 1 H), one resonance is obscured. 3r: 0.95-1.97 (m, 11 H), 1.24 (s, 3 H), 3.76 (s, 3 H), 4.52 (d, J = 2.0 Hz, 1 H), 6.92 (d, J = 2.0 Hz, 1 H).
-
-
-
|