-
1
-
-
84957315297
-
String Theory, what is it
-
[1] See, for example, A. Morozov, String Theory, what is it, Rus. Physics Uspekhi 35 (1992) 671 (v.162, No. 8, p. 84-175 of Russian edition); A. Morozov, Integrability and Matrix Models, ibid. 164 (1994) No. 1, 3-62 (Rus. ed.), hep-th/9303139.
-
(1992)
Rus. Physics Uspekhi
, vol.35
, pp. 671
-
-
Morozov, A.1
-
2
-
-
0011674703
-
-
of Russian edition
-
[1] See, for example, A. Morozov, String Theory, what is it, Rus. Physics Uspekhi 35 (1992) 671 (v.162, No. 8, p. 84-175 of Russian edition); A. Morozov, Integrability and Matrix Models, ibid. 164 (1994) No. 1, 3-62 (Rus. ed.), hep-th/9303139.
-
Rus. Physics Uspekhi
, vol.162
, Issue.8
, pp. 84-175
-
-
-
3
-
-
84956226273
-
Integrability and Matrix Models
-
(Rus. ed.), hep-th/9303139
-
[1] See, for example, A. Morozov, String Theory, what is it, Rus. Physics Uspekhi 35 (1992) 671 (v.162, No. 8, p. 84-175 of Russian edition); A. Morozov, Integrability and Matrix Models, ibid. 164 (1994) No. 1, 3-62 (Rus. ed.), hep-th/9303139.
-
(1994)
Rus. Physics Uspekhi
, vol.164
, Issue.1
, pp. 3-62
-
-
Morozov, A.1
-
4
-
-
13644276850
-
Electric-magnetic duality, Monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory
-
Err.
-
[2] N. Seiberg and E. Witten, Electric-Magnetic Duality, Monopole Condensation and Confinement in N = 2 Supersymmetric Yang-Mills Theory, Nucl. Phys. B 426 (1994) 19-52; Err.; ibid. B 430 (1994) 485-486, hep-th/9407087.
-
(1994)
Nucl. Phys. B
, vol.426
, pp. 19-52
-
-
Seiberg, N.1
Witten, E.2
-
5
-
-
17044403583
-
-
hep-th/9407087
-
[2] N. Seiberg and E. Witten, Electric-Magnetic Duality, Monopole Condensation and Confinement in N = 2 Supersymmetric Yang-Mills Theory, Nucl. Phys. B 426 (1994) 19-52; Err.; ibid. B 430 (1994) 485-486, hep-th/9407087.
-
(1994)
Nucl. Phys. B
, vol.430
, pp. 485-486
-
-
-
6
-
-
0346866199
-
Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD
-
[3] N. Seiberg and E. Witten, Monopoles, Duality and Chiral Symmetry Breaking in N = 2 Supersymmetric QCD, ibid. B 431 (1994) 484-550, Nucl. Phys. B 431 (1994) 484-550, hep-th/9408099.
-
(1994)
Nucl. Phys. B
, vol.431
, pp. 484-550
-
-
Seiberg, N.1
Witten, E.2
-
7
-
-
0346866199
-
-
hep-th/9408099
-
[3] N. Seiberg and E. Witten, Monopoles, Duality and Chiral Symmetry Breaking in N = 2 Supersymmetric QCD, ibid. B 431 (1994) 484-550, Nucl. Phys. B 431 (1994) 484-550, hep-th/9408099.
-
(1994)
Nucl. Phys. B
, vol.431
, pp. 484-550
-
-
-
8
-
-
0000263333
-
Integrability and exact Seiberg-Witten solution
-
hep-th/9505035
-
[4] A. Gorsky, I. Krichever, A. Marshakov, A. Mironov et al., Integrability and Exact Seiberg-Witten Solution, Phys. Lett. B 355 (1995) 466-474, hep-th/9505035.
-
(1995)
Phys. Lett. B
, vol.355
, pp. 466-474
-
-
Gorsky, A.1
Krichever, I.2
Marshakov, A.3
Mironov, A.4
-
9
-
-
0030583978
-
Integrable systems and supersymmetric gauge theories
-
hep-th/9509161
-
[5] E. Martinec and N. Warner, Integrable Systems and Supersymmetric Gauge Theories, Nucl. Phys. B 459 (1996) 97-112, hep-th/9509161.
-
(1996)
Nucl. Phys. B
, vol.459
, pp. 97-112
-
-
Martinec, E.1
Warner, N.2
-
10
-
-
0000522045
-
Whitham-Toda hierarchy and N = 2 supersymmetric Yang-Mills theory
-
hep-th/9509162
-
[6] T. Nakatsu and K. Takasaki, Whitham-Toda Hierarchy and N = 2 Supersymmetric Yang-Mills Theory, Mod. Phys. Lett. A 11 (1996) 157-168, hep-th/9509162.
-
(1996)
Mod. Phys. Lett. A
, vol.11
, pp. 157-168
-
-
Nakatsu, T.1
Takasaki, K.2
-
12
-
-
0030569824
-
Supersymmetric Yang-Mills theory and integrable systems
-
IASSNS-HEP-95-78, hep-th/9510101
-
[8] R. Donagi and E. Witten, Supersymmetric Yang-Mills Theory and Integrable Systems, IASSNS-HEP-95-78, Nucl. Phys. B 460 (1996) 299-334, hep-th/9510101.
-
(1996)
Nucl. Phys. B
, vol.460
, pp. 299-334
-
-
Donagi, R.1
Witten, E.2
-
13
-
-
0002547407
-
Integrable structures in supersymmetric gauge and string theory
-
hep-th/9510204
-
[9] E. Martinec, Integrable Structures in Supersymmetric Gauge and String Theory, Phys. Lett. B 367 (1996) 91-96, hep-th/9510204.
-
(1996)
Phys. Lett. B
, vol.367
, pp. 91-96
-
-
Martinec, E.1
-
16
-
-
0043290689
-
Simple singularities and N = 2 supersymmetric Yang-Mills theory
-
hep-th/9411048
-
[12] A. Klemm, W. Lerche, S. Theisen and S. Yankielowicz, Simple Singularities and N = 2 Supersymmetric Yang-Mills Theory, Phys. Lett. B 344 (1995) 169, hep-th/9411048.
-
(1995)
Phys. Lett. B
, vol.344
, pp. 169
-
-
Klemm, A.1
Lerche, W.2
Theisen, S.3
Yankielowicz, S.4
-
17
-
-
4243445460
-
The vacuum structure and spectrum of N = 2 supersymmetric SU(N) gauge theory
-
hep-th/9411057
-
[13] P. Agyres and A. Faraggi, The Vacuum Structure and Spectrum of N = 2 Supersymmetric SU(N) Gauge Theory, Phys. Rev. Lett. 73 (1995) 3931, hep-th/9411057.
-
(1995)
Phys. Rev. Lett.
, vol.73
, pp. 3931
-
-
Agyres, P.1
Faraggi, A.2
-
18
-
-
0001316347
-
The moduli space and Monodromies of N = 2 supersymmetric SO(2R + 1) Yang-Mills theory
-
hep-th/9504102
-
[14] U. H. Danielsson and B. Sundborg, The Moduli Space and Monodromies of N = 2 Supersymmetric SO(2R + 1) Yang-Mills Theory, Phys. Lett. B 358 (1995) 273-280, hep-th/9504102.
-
(1995)
Phys. Lett. B
, vol.358
, pp. 273-280
-
-
Danielsson, U.H.1
Sundborg, B.2
-
19
-
-
0010870080
-
On the Monodromies of N = 2 supersymmetric Yang-Mills theory with gauge group SO(2n)
-
hep-th/9507008
-
[15] A. Brandhuber and K. Landsteiner, On the Monodromies of N = 2 Supersymmetric Yang-Mills Theory with Gauge Group SO(2n), Phys. Lett. B 358 (1995) 73-80, hep-th/9507008.
-
(1995)
Phys. Lett. B
, vol.358
, pp. 73-80
-
-
Brandhuber, A.1
Landsteiner, K.2
-
20
-
-
0000464605
-
c) gauge theories
-
hep-th/9505075
-
c) Gauge Theories, Nucl. Phys. B 452 (1995) 283-312, hep-th/9505075.
-
(1995)
Nucl. Phys. B
, vol.452
, pp. 283-312
-
-
Hanany, A.1
Oz, Y.2
-
21
-
-
33646057161
-
Supersymmetry Algebra that includes topological charges
-
[17] D. Olive and E. Witten, Supersymmetry Algebra that Includes Topological Charges, Phys. Lett. B 78 (1978) 97-101.
-
(1978)
Phys. Lett. B
, vol.78
, pp. 97-101
-
-
Olive, D.1
Witten, E.2
-
22
-
-
0011546968
-
Classical integrable finite-dimensional systems related to lie Algebras
-
[18] The classical review paper on integrable systems of particles is: M. Olshanetsky and A. Perelomov, Classical Integrable Finite-Dimensional Systems Related to Lie Algebras, Phys. Rep. 71C (1981) 97-101.
-
(1981)
Phys. Rep.
, vol.71 C
, pp. 97-101
-
-
Olshanetsky, M.1
Perelomov, A.2
-
23
-
-
0010989303
-
Methods of algebraic geometry in the theory of nonlinear equations
-
[19] The relevant chapter of integrability theory is very old and the number of references is very large. We mention just a few papers, directly related to our consideration: I. Krichever, Methods of Algebraic Geometry in the Theory of Nonlinear Equations, Sov. Math. Surveys, 32 (1977) 185-213; I. Krichever, The Integration of Non-linear Equations by the Methods of Algebraic Geometry, Funk. Anal. and Appl. 11 (1977) No. 1 15-31 (Rus. ed.); I. Krichever, Elliptic Solutions of the Kadomtsev-Petviashvili Equation and Integrable System of Particles, Funk. Anal. and Appl. 14 (1980) 282-290 (No. 4 15-31 of Rus. ed.); B. Dubrovin, Theta Functions and Non-linear Equations, Sov. Math. Surveys, 36 (1981) No. 2 11-80 (Rus. ed.); H. Flaschka and D. McLaughlin, Canonicaly Conjugate Variables for the KdV Equation and the Toda Lattice with Periodic Boundary Conditions, Progr. Theor. Phys. 55 (1976) 438-456; M. Adler and P. van Moerbeke, Completely Integrable Systems, Euclidean Lie Algebras and Curves, Adv. Math. 38 (1980) 267-317; M. Adler and P. van Moerbeke, Linearization of Hamiltonian Systems, Jacobi Varieties and Representation Theory, ibid. 318-379. O. Babelon, E. Billey, I. Krichever and M. Talon, Spin Generalization of the Calogero-Moser System and the Matrix KP Equation, hep-th/9411160.
-
(1977)
Sov. Math. Surveys
, vol.32
, pp. 185-213
-
-
Krichever, I.1
-
24
-
-
34250285119
-
The integration of non-linear equations by the methods of algebraic geometry
-
Rus. ed.
-
[19] The relevant chapter of integrability theory is very old and the number of references is very large. We mention just a few papers, directly related to our consideration: I. Krichever, Methods of Algebraic Geometry in the Theory of Nonlinear Equations, Sov. Math. Surveys, 32 (1977) 185-213; I. Krichever, The Integration of Non-linear Equations by the Methods of Algebraic Geometry, Funk. Anal. and Appl. 11 (1977) No. 1 15-31 (Rus. ed.); I. Krichever, Elliptic Solutions of the Kadomtsev-Petviashvili Equation and Integrable System of Particles, Funk. Anal. and Appl. 14 (1980) 282-290 (No. 4 15-31 of Rus. ed.); B. Dubrovin, Theta Functions and Non-linear Equations, Sov. Math. Surveys, 36 (1981) No. 2 11-80 (Rus. ed.); H. Flaschka and D. McLaughlin, Canonicaly Conjugate Variables for the KdV Equation and the Toda Lattice with Periodic Boundary Conditions, Progr. Theor. Phys. 55 (1976) 438-456; M. Adler and P. van Moerbeke, Completely Integrable Systems, Euclidean Lie Algebras and Curves, Adv. Math. 38 (1980) 267-317; M. Adler and P. van Moerbeke, Linearization of Hamiltonian Systems, Jacobi Varieties and Representation Theory, ibid. 318-379. O. Babelon, E. Billey, I. Krichever and M. Talon, Spin Generalization of the Calogero-Moser System and the Matrix KP Equation, hep-th/9411160.
-
(1977)
Funk. Anal. and Appl.
, vol.11
, Issue.1
, pp. 15-31
-
-
Krichever, I.1
-
25
-
-
0345860250
-
Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable system of particles
-
No. 4 15-31 of Rus. ed.
-
[19] The relevant chapter of integrability theory is very old and the number of references is very large. We mention just a few papers, directly related to our consideration: I. Krichever, Methods of Algebraic Geometry in the Theory of Nonlinear Equations, Sov. Math. Surveys, 32 (1977) 185-213; I. Krichever, The Integration of Non-linear Equations by the Methods of Algebraic Geometry, Funk. Anal. and Appl. 11 (1977) No. 1 15-31 (Rus. ed.); I. Krichever, Elliptic Solutions of the Kadomtsev-Petviashvili Equation and Integrable System of Particles, Funk. Anal. and Appl. 14 (1980) 282-290 (No. 4 15-31 of Rus. ed.); B. Dubrovin, Theta Functions and Non-linear Equations, Sov. Math. Surveys, 36 (1981) No. 2 11-80 (Rus. ed.); H. Flaschka and D. McLaughlin, Canonicaly Conjugate Variables for the KdV Equation and the Toda Lattice with Periodic Boundary Conditions, Progr. Theor. Phys. 55 (1976) 438-456; M. Adler and P. van Moerbeke, Completely Integrable Systems, Euclidean Lie Algebras and Curves, Adv. Math. 38 (1980) 267-317; M. Adler and P. van Moerbeke, Linearization of Hamiltonian Systems, Jacobi Varieties and Representation Theory, ibid. 318-379. O. Babelon, E. Billey, I. Krichever and M. Talon, Spin Generalization of the Calogero-Moser System and the Matrix KP Equation, hep-th/9411160.
-
(1980)
Funk. Anal. and Appl.
, vol.14
, pp. 282-290
-
-
Krichever, I.1
-
26
-
-
84928007477
-
Theta functions and non-linear equations
-
Rus. ed.
-
[19] The relevant chapter of integrability theory is very old and the number of references is very large. We mention just a few papers, directly related to our consideration: I. Krichever, Methods of Algebraic Geometry in the Theory of Nonlinear Equations, Sov. Math. Surveys, 32 (1977) 185-213; I. Krichever, The Integration of Non-linear Equations by the Methods of Algebraic Geometry, Funk. Anal. and Appl. 11 (1977) No. 1 15-31 (Rus. ed.); I. Krichever, Elliptic Solutions of the Kadomtsev-Petviashvili Equation and Integrable System of Particles, Funk. Anal. and Appl. 14 (1980) 282-290 (No. 4 15-31 of Rus. ed.); B. Dubrovin, Theta Functions and Non-linear Equations, Sov. Math. Surveys, 36 (1981) No. 2 11-80 (Rus. ed.); H. Flaschka and D. McLaughlin, Canonicaly Conjugate Variables for the KdV Equation and the Toda Lattice with Periodic Boundary Conditions, Progr. Theor. Phys. 55 (1976) 438-456; M. Adler and P. van Moerbeke, Completely Integrable Systems, Euclidean Lie Algebras and Curves, Adv. Math. 38 (1980) 267-317; M. Adler and P. van Moerbeke, Linearization of Hamiltonian Systems, Jacobi Varieties and Representation Theory, ibid. 318-379. O. Babelon, E. Billey, I. Krichever and M. Talon, Spin Generalization of the Calogero-Moser System and the Matrix KP Equation, hep-th/9411160.
-
(1981)
Sov. Math. Surveys
, vol.36
, Issue.2
, pp. 11-80
-
-
Dubrovin, B.1
-
27
-
-
0010989303
-
Canonicaly conjugate variables for the KdV equation and the Toda Lattice with periodic boundary conditions
-
[19] The relevant chapter of integrability theory is very old and the number of references is very large. We mention just a few papers, directly related to our consideration: I. Krichever, Methods of Algebraic Geometry in the Theory of Nonlinear Equations, Sov. Math. Surveys, 32 (1977) 185-213; I. Krichever, The Integration of Non-linear Equations by the Methods of Algebraic Geometry, Funk. Anal. and Appl. 11 (1977) No. 1 15-31 (Rus. ed.); I. Krichever, Elliptic Solutions of the Kadomtsev-Petviashvili Equation and Integrable System of Particles, Funk. Anal. and Appl. 14 (1980) 282-290 (No. 4 15-31 of Rus. ed.); B. Dubrovin, Theta Functions and Non-linear Equations, Sov. Math. Surveys, 36 (1981) No. 2 11-80 (Rus. ed.); H. Flaschka and D. McLaughlin, Canonicaly Conjugate Variables for the KdV Equation and the Toda Lattice with Periodic Boundary Conditions, Progr. Theor. Phys. 55 (1976) 438-456; M. Adler and P. van Moerbeke, Completely Integrable Systems, Euclidean Lie Algebras and Curves, Adv. Math. 38 (1980) 267-317; M. Adler and P. van Moerbeke, Linearization of Hamiltonian Systems, Jacobi Varieties and Representation Theory, ibid. 318-379. O. Babelon, E. Billey, I. Krichever and M. Talon, Spin Generalization of the Calogero-Moser System and the Matrix KP Equation, hep-th/9411160.
-
(1976)
Progr. Theor. Phys.
, vol.55
, pp. 438-456
-
-
Flaschka, H.1
McLaughlin, D.2
-
28
-
-
49149147606
-
Completely integrable systems, Euclidean lie algebras and curves
-
[19] The relevant chapter of integrability theory is very old and the number of references is very large. We mention just a few papers, directly related to our consideration: I. Krichever, Methods of Algebraic Geometry in the Theory of Nonlinear Equations, Sov. Math. Surveys, 32 (1977) 185-213; I. Krichever, The Integration of Non-linear Equations by the Methods of Algebraic Geometry, Funk. Anal. and Appl. 11 (1977) No. 1 15-31 (Rus. ed.); I. Krichever, Elliptic Solutions of the Kadomtsev-Petviashvili Equation and Integrable System of Particles, Funk. Anal. and Appl. 14 (1980) 282-290 (No. 4 15-31 of Rus. ed.); B. Dubrovin, Theta Functions and Non-linear Equations, Sov. Math. Surveys, 36 (1981) No. 2 11-80 (Rus. ed.); H. Flaschka and D. McLaughlin, Canonicaly Conjugate Variables for the KdV Equation and the Toda Lattice with Periodic Boundary Conditions, Progr. Theor. Phys. 55 (1976) 438-456; M. Adler and P. van Moerbeke, Completely Integrable Systems, Euclidean Lie Algebras and Curves, Adv. Math. 38 (1980) 267-317; M. Adler and P. van Moerbeke, Linearization of Hamiltonian Systems, Jacobi Varieties and Representation Theory, ibid. 318-379. O. Babelon, E. Billey, I. Krichever and M. Talon, Spin Generalization of the Calogero-Moser System and the Matrix KP Equation, hep-th/9411160.
-
(1980)
Adv. Math.
, vol.38
, pp. 267-317
-
-
Adler, M.1
Van Moerbeke, P.2
-
29
-
-
49149144090
-
Linearization of hamiltonian systems, Jacobi varieties and representation theory
-
[19] The relevant chapter of integrability theory is very old and the number of references is very large. We mention just a few papers, directly related to our consideration: I. Krichever, Methods of Algebraic Geometry in the Theory of Nonlinear Equations, Sov. Math. Surveys, 32 (1977) 185-213; I. Krichever, The Integration of Non-linear Equations by the Methods of Algebraic Geometry, Funk. Anal. and Appl. 11 (1977) No. 1 15-31 (Rus. ed.); I. Krichever, Elliptic Solutions of the Kadomtsev-Petviashvili Equation and Integrable System of Particles, Funk. Anal. and Appl. 14 (1980) 282-290 (No. 4 15-31 of Rus. ed.); B. Dubrovin, Theta Functions and Non-linear Equations, Sov. Math. Surveys, 36 (1981) No. 2 11-80 (Rus. ed.); H. Flaschka and D. McLaughlin, Canonicaly Conjugate Variables for the KdV Equation and the Toda Lattice with Periodic Boundary Conditions, Progr. Theor. Phys. 55 (1976) 438-456; M. Adler and P. van Moerbeke, Completely Integrable Systems, Euclidean Lie Algebras and Curves, Adv. Math. 38 (1980) 267-317; M. Adler and P. van Moerbeke, Linearization of Hamiltonian Systems, Jacobi Varieties and Representation Theory, ibid. 318-379. O. Babelon, E. Billey, I. Krichever and M. Talon, Spin Generalization of the Calogero-Moser System and the Matrix KP Equation, hep-th/9411160.
-
Adv. Math.
, pp. 318-379
-
-
Adler, M.1
Van Moerbeke, P.2
-
30
-
-
0010989303
-
-
hep-th/9411160
-
[19] The relevant chapter of integrability theory is very old and the number of references is very large. We mention just a few papers, directly related to our consideration: I. Krichever, Methods of Algebraic Geometry in the Theory of Nonlinear Equations, Sov. Math. Surveys, 32 (1977) 185-213; I. Krichever, The Integration of Non-linear Equations by the Methods of Algebraic Geometry, Funk. Anal. and Appl. 11 (1977) No. 1 15-31 (Rus. ed.); I. Krichever, Elliptic Solutions of the Kadomtsev-Petviashvili Equation and Integrable System of Particles, Funk. Anal. and Appl. 14 (1980) 282-290 (No. 4 15-31 of Rus. ed.); B. Dubrovin, Theta Functions and Non-linear Equations, Sov. Math. Surveys, 36 (1981) No. 2 11-80 (Rus. ed.); H. Flaschka and D. McLaughlin, Canonicaly Conjugate Variables for the KdV Equation and the Toda Lattice with Periodic Boundary Conditions, Progr. Theor. Phys. 55 (1976) 438-456; M. Adler and P. van Moerbeke, Completely Integrable Systems, Euclidean Lie Algebras and Curves, Adv. Math. 38 (1980) 267-317; M. Adler and P. van Moerbeke, Linearization of Hamiltonian Systems, Jacobi Varieties and Representation Theory, ibid. 318-379. O. Babelon, E. Billey, I. Krichever and M. Talon, Spin Generalization of the Calogero-Moser System and the Matrix KP Equation, hep-th/9411160.
-
Spin Generalization of the Calogero-Moser System and the Matrix KP Equation
-
-
Babelon, O.1
Billey, E.2
Krichever, I.3
Talon, M.4
-
31
-
-
84972556273
-
Stable bundles and integrable systems
-
[20] The modern-style language in this field uses the notion of Hitchin systems, which emphasizes interpretation of Lax equation as a flat connection condition. A few directly relevant references are: N. Hitchin, Stable Bundles and Integrable Systems, Duke Math. Journ. 54 (1987) 91-114; N. Hitchin, Flat Connections and Geometric Quantization, Comm.Math. Phys. 131 (1990) 347-380; E. Markman, Spectral Curves and Integrable Systems, Comp. Math. 93 (1994) 255-290; A. Beilinson and V. Drinfeld, Quantization of Hitchin's Fibration and Langlands Program, preprint (1994); B. Feigin and E. Frenkel, Affine Kac-Moody Algebras at the Critical Level and Gelfand-Dikii Algebras, Int. J. Mod. Phys. A7, Suppl.1A (1992) 197-215; B. Enriquez and V. Roubtsov, Hitchin Systems, Higher Gaudin Operators and R-Matrices, alggeom/9503010; N. Nekrasov, Holomorphic Bundles and Many-Body Systems, hep-th/9503157; M. Olshanetsky Generalized Hitchin Systems and the Knizhnik-Zamolodchikov-Bernard Equation on Elliptic Curves, hep-th/9510143; O. Sheinman, hep-th/9510165; see also [8] and [9].
-
(1987)
Duke Math. Journ.
, vol.54
, pp. 91-114
-
-
Hitchin, N.1
-
32
-
-
1542477264
-
Flat connections and geometric quantization
-
[20] The modern-style language in this field uses the notion of Hitchin systems, which emphasizes interpretation of Lax equation as a flat connection condition. A few directly relevant references are: N. Hitchin, Stable Bundles and Integrable Systems, Duke Math. Journ. 54 (1987) 91-114; N. Hitchin, Flat Connections and Geometric Quantization, Comm.Math. Phys. 131 (1990) 347-380; E. Markman, Spectral Curves and Integrable Systems, Comp. Math. 93 (1994) 255-290; A. Beilinson and V. Drinfeld, Quantization of Hitchin's Fibration and Langlands Program, preprint (1994); B. Feigin and E. Frenkel, Affine Kac-Moody Algebras at the Critical Level and Gelfand-Dikii Algebras, Int. J. Mod. Phys. A7, Suppl.1A (1992) 197-215; B. Enriquez and V. Roubtsov, Hitchin Systems, Higher Gaudin Operators and R-Matrices, alggeom/9503010; N. Nekrasov, Holomorphic Bundles and Many-Body Systems, hep-th/9503157; M. Olshanetsky Generalized Hitchin Systems and the Knizhnik-Zamolodchikov-Bernard Equation on Elliptic Curves, hep-th/9510143; O. Sheinman, hep-th/9510165; see also [8] and [9].
-
(1990)
Comm.Math. Phys.
, vol.131
, pp. 347-380
-
-
Hitchin, N.1
-
33
-
-
84972556273
-
Spectral curves and integrable systems
-
[20] The modern-style language in this field uses the notion of Hitchin systems, which emphasizes interpretation of Lax equation as a flat connection condition. A few directly relevant references are: N. Hitchin, Stable Bundles and Integrable Systems, Duke Math. Journ. 54 (1987) 91-114; N. Hitchin, Flat Connections and Geometric Quantization, Comm.Math. Phys. 131 (1990) 347-380; E. Markman, Spectral Curves and Integrable Systems, Comp. Math. 93 (1994) 255-290; A. Beilinson and V. Drinfeld, Quantization of Hitchin's Fibration and Langlands Program, preprint (1994); B. Feigin and E. Frenkel, Affine Kac-Moody Algebras at the Critical Level and Gelfand-Dikii Algebras, Int. J. Mod. Phys. A7, Suppl.1A (1992) 197-215; B. Enriquez and V. Roubtsov, Hitchin Systems, Higher Gaudin Operators and R-Matrices, alggeom/9503010; N. Nekrasov, Holomorphic Bundles and Many-Body Systems, hep-th/9503157; M. Olshanetsky Generalized Hitchin Systems and the Knizhnik-Zamolodchikov-Bernard Equation on Elliptic Curves, hep-th/9510143; O. Sheinman, hep-th/9510165; see also [8] and [9].
-
(1994)
Comp. Math.
, vol.93
, pp. 255-290
-
-
Markman, E.1
-
34
-
-
84972556273
-
-
preprint
-
[20] The modern-style language in this field uses the notion of Hitchin systems, which emphasizes interpretation of Lax equation as a flat connection condition. A few directly relevant references are: N. Hitchin, Stable Bundles and Integrable Systems, Duke Math. Journ. 54 (1987) 91-114; N. Hitchin, Flat Connections and Geometric Quantization, Comm.Math. Phys. 131 (1990) 347-380; E. Markman, Spectral Curves and Integrable Systems, Comp. Math. 93 (1994) 255-290; A. Beilinson and V. Drinfeld, Quantization of Hitchin's Fibration and Langlands Program, preprint (1994); B. Feigin and E. Frenkel, Affine Kac-Moody Algebras at the Critical Level and Gelfand-Dikii Algebras, Int. J. Mod. Phys. A7, Suppl.1A (1992) 197-215; B. Enriquez and V. Roubtsov, Hitchin Systems, Higher Gaudin Operators and R-Matrices, alggeom/9503010; N. Nekrasov, Holomorphic Bundles and Many-Body Systems, hep-th/9503157; M. Olshanetsky Generalized Hitchin Systems and the Knizhnik-Zamolodchikov-Bernard Equation on Elliptic Curves, hep-th/9510143; O. Sheinman, hep-th/9510165; see also [8] and [9].
-
(1994)
Quantization of Hitchin's Fibration and Langlands Program
-
-
Beilinson, A.1
Drinfeld, V.2
-
35
-
-
84972556273
-
Affine Kac-Moody algebras at the critical level and Gelfand-Dikii algebras
-
[20] The modern-style language in this field uses the notion of Hitchin systems, which emphasizes interpretation of Lax equation as a flat connection condition. A few directly relevant references are: N. Hitchin, Stable Bundles and Integrable Systems, Duke Math. Journ. 54 (1987) 91-114; N. Hitchin, Flat Connections and Geometric Quantization, Comm.Math. Phys. 131 (1990) 347-380; E. Markman, Spectral Curves and Integrable Systems, Comp. Math. 93 (1994) 255-290; A. Beilinson and V. Drinfeld, Quantization of Hitchin's Fibration and Langlands Program, preprint (1994); B. Feigin and E. Frenkel, Affine Kac-Moody Algebras at the Critical Level and Gelfand-Dikii Algebras, Int. J. Mod. Phys. A7, Suppl.1A (1992) 197-215; B. Enriquez and V. Roubtsov, Hitchin Systems, Higher Gaudin Operators and R-Matrices, alggeom/9503010; N. Nekrasov, Holomorphic Bundles and Many-Body Systems, hep-th/9503157; M. Olshanetsky Generalized Hitchin Systems and the Knizhnik-Zamolodchikov-Bernard Equation on Elliptic Curves, hep-th/9510143; O. Sheinman, hep-th/9510165; see also [8] and [9].
-
(1992)
Int. J. Mod. Phys.
, vol.A7
, Issue.SUPPL.1A
, pp. 197-215
-
-
Feigin, B.1
Frenkel, E.2
-
36
-
-
84972556273
-
-
alggeom/9503010
-
[20] The modern-style language in this field uses the notion of Hitchin systems, which emphasizes interpretation of Lax equation as a flat connection condition. A few directly relevant references are: N. Hitchin, Stable Bundles and Integrable Systems, Duke Math. Journ. 54 (1987) 91-114; N. Hitchin, Flat Connections and Geometric Quantization, Comm.Math. Phys. 131 (1990) 347-380; E. Markman, Spectral Curves and Integrable Systems, Comp. Math. 93 (1994) 255-290; A. Beilinson and V. Drinfeld, Quantization of Hitchin's Fibration and Langlands Program, preprint (1994); B. Feigin and E. Frenkel, Affine Kac-Moody Algebras at the Critical Level and Gelfand-Dikii Algebras, Int. J. Mod. Phys. A7, Suppl.1A (1992) 197-215; B. Enriquez and V. Roubtsov, Hitchin Systems, Higher Gaudin Operators and R-Matrices, alggeom/9503010; N. Nekrasov, Holomorphic Bundles and Many-Body Systems, hep-th/9503157; M. Olshanetsky Generalized Hitchin Systems and the Knizhnik-Zamolodchikov-Bernard Equation on Elliptic Curves, hep-th/9510143; O. Sheinman, hep-th/9510165; see also [8] and [9].
-
Hitchin Systems, Higher Gaudin Operators and R-Matrices
-
-
Enriquez, B.1
Roubtsov, V.2
-
37
-
-
84972556273
-
-
hep-th/9503157
-
[20] The modern-style language in this field uses the notion of Hitchin systems, which emphasizes interpretation of Lax equation as a flat connection condition. A few directly relevant references are: N. Hitchin, Stable Bundles and Integrable Systems, Duke Math. Journ. 54 (1987) 91-114; N. Hitchin, Flat Connections and Geometric Quantization, Comm.Math. Phys. 131 (1990) 347-380; E. Markman, Spectral Curves and Integrable Systems, Comp. Math. 93 (1994) 255-290; A. Beilinson and V. Drinfeld, Quantization of Hitchin's Fibration and Langlands Program, preprint (1994); B. Feigin and E. Frenkel, Affine Kac-Moody Algebras at the Critical Level and Gelfand-Dikii Algebras, Int. J. Mod. Phys. A7, Suppl.1A (1992) 197-215; B. Enriquez and V. Roubtsov, Hitchin Systems, Higher Gaudin Operators and R-Matrices, alggeom/9503010; N. Nekrasov, Holomorphic Bundles and Many-Body Systems, hep-th/9503157; M. Olshanetsky Generalized Hitchin Systems and the Knizhnik-Zamolodchikov-Bernard Equation on Elliptic Curves, hep-th/9510143; O. Sheinman, hep-th/9510165; see also [8] and [9].
-
Holomorphic Bundles and Many-Body Systems
-
-
Nekrasov, N.1
-
38
-
-
84972556273
-
-
hep-th/9510143
-
[20] The modern-style language in this field uses the notion of Hitchin systems, which emphasizes interpretation of Lax equation as a flat connection condition. A few directly relevant references are: N. Hitchin, Stable Bundles and Integrable Systems, Duke Math. Journ. 54 (1987) 91-114; N. Hitchin, Flat Connections and Geometric Quantization, Comm.Math. Phys. 131 (1990) 347-380; E. Markman, Spectral Curves and Integrable Systems, Comp. Math. 93 (1994) 255-290; A. Beilinson and V. Drinfeld, Quantization of Hitchin's Fibration and Langlands Program, preprint (1994); B. Feigin and E. Frenkel, Affine Kac-Moody Algebras at the Critical Level and Gelfand-Dikii Algebras, Int. J. Mod. Phys. A7, Suppl.1A (1992) 197-215; B. Enriquez and V. Roubtsov, Hitchin Systems, Higher Gaudin Operators and R-Matrices, alggeom/9503010; N. Nekrasov, Holomorphic Bundles and Many-Body Systems, hep-th/9503157; M. Olshanetsky Generalized Hitchin Systems and the Knizhnik-Zamolodchikov-Bernard Equation on Elliptic Curves, hep-th/9510143; O. Sheinman, hep-th/9510165; see also [8] and [9].
-
Generalized Hitchin Systems and the Knizhnik-Zamolodchikov-Bernard Equation on Elliptic Curves
-
-
Olshanetsky, M.1
-
39
-
-
84972556273
-
-
hep-th/9510165; see also [8] and [9]
-
[20] The modern-style language in this field uses the notion of Hitchin systems, which emphasizes interpretation of Lax equation as a flat connection condition. A few directly relevant references are: N. Hitchin, Stable Bundles and Integrable Systems, Duke Math. Journ. 54 (1987) 91-114; N. Hitchin, Flat Connections and Geometric Quantization, Comm.Math. Phys. 131 (1990) 347-380; E. Markman, Spectral Curves and Integrable Systems, Comp. Math. 93 (1994) 255-290; A. Beilinson and V. Drinfeld, Quantization of Hitchin's Fibration and Langlands Program, preprint (1994); B. Feigin and E. Frenkel, Affine Kac-Moody Algebras at the Critical Level and Gelfand-Dikii Algebras, Int. J. Mod. Phys. A7, Suppl.1A (1992) 197-215; B. Enriquez and V. Roubtsov, Hitchin Systems, Higher Gaudin Operators and R-Matrices, alggeom/9503010; N. Nekrasov, Holomorphic Bundles and Many-Body Systems, hep-th/9503157; M. Olshanetsky Generalized Hitchin Systems and the Knizhnik-Zamolodchikov-Bernard Equation on Elliptic Curves, hep-th/9510143; O. Sheinman, hep-th/9510165; see also [8] and [9].
-
-
-
Sheinman, O.1
-
40
-
-
0011605088
-
-
(Rus. ed.); ref. [23] below
-
[21] See the following papers for general description and references: B. Dubrovin and S. Novikov, Sov. Math. Surveys 36 (1981) No. 2 12 (Rus. ed.); ref. [23] below.
-
(1981)
Sov. Math. Surveys
, vol.36
, Issue.2
, pp. 12
-
-
Dubrovin, B.1
Novikov, S.2
-
41
-
-
0003868554
-
-
SISSA-89/94/FM
-
[22] B. Dubrovin, Geometry of 2d Topological Field Theories, SISSA-89/94/FM; B. Dubrovin, Integrable Systems in Topological Field Theory, Nucl. Phys. B 379 (1992) 627-689; B. Dubrovin, Hamiltonian Formalism of Witham-type Hierarchies in Topological Landau-Ginzburg Model, Comm. Math. Phys. 145 (1992) 195.
-
Geometry of 2d Topological Field Theories
-
-
Dubrovin, B.1
-
42
-
-
0347427534
-
Integrable systems in topological field theory
-
[22] B. Dubrovin, Geometry of 2d Topological Field Theories, SISSA-89/94/FM; B. Dubrovin, Integrable Systems in Topological Field Theory, Nucl. Phys. B 379 (1992) 627-689; B. Dubrovin, Hamiltonian Formalism of Witham-type Hierarchies in Topological Landau-Ginzburg Model, Comm. Math. Phys. 145 (1992) 195.
-
(1992)
Nucl. Phys. B
, vol.379
, pp. 627-689
-
-
Dubrovin, B.1
-
43
-
-
0011401791
-
Hamiltonian formalism of Witham-type hierarchies in topological Landau-Ginzburg model
-
[22] B. Dubrovin, Geometry of 2d Topological Field Theories, SISSA-89/94/FM; B. Dubrovin, Integrable Systems in Topological Field Theory, Nucl. Phys. B 379 (1992) 627-689; B. Dubrovin, Hamiltonian Formalism of Witham-type Hierarchies in Topological Landau-Ginzburg Model, Comm. Math. Phys. 145 (1992) 195.
-
(1992)
Comm. Math. Phys.
, vol.145
, pp. 195
-
-
Dubrovin, B.1
-
45
-
-
0037512871
-
The dispersionless Lax equations in topological minimal models
-
[23] I. Krichever, The τ-function of the Universal Whitham Hierarchy, Matrix Models and Topological Field Theories, hep-th/9205110; I. Krichever, The Dispersionless Lax Equations in Topological Minimal Models, Comm. Math. Phys. 143 (1992) 415-429.
-
(1992)
Comm. Math. Phys.
, vol.143
, pp. 415-429
-
-
Krichever, I.1
-
46
-
-
0011615209
-
-
[24] A. Losev and I. Polyubin, JETP Lett. 58 (1993) 573, Int. J. Mod. Phys. A10 (1995) 4161-4178, hep-th/9305079.
-
(1993)
JETP Lett.
, vol.58
, pp. 573
-
-
Losev, A.1
Polyubin, I.2
-
47
-
-
0000284867
-
-
hep-th/9305079
-
[24] A. Losev and I. Polyubin, JETP Lett. 58 (1993) 573, Int. J. Mod. Phys. A10 (1995) 4161-4178, hep-th/9305079.
-
(1995)
Int. J. Mod. Phys.
, vol.A10
, pp. 4161-4178
-
-
-
48
-
-
0001564216
-
Landau-Ginzburg topological theories in the framework of GKM (Generalized Kontsevich Model) and equivalent hierarchies
-
hep-th/9208046
-
[25] S. Kharchev, A. Marshakov, A. Mironov et al., Landau-Ginzburg Topological Theories in the Framework of GKM (Generalized Kontsevich Model) and Equivalent Hierarchies, Mod. Phys. Lett. A 8 (1993) 1047, hep-th/9208046; S. Kharchev and A. Marshakov, Int. J. Mod. Phys. A10 (1995) 1219.
-
(1993)
Mod. Phys. Lett. A
, vol.8
, pp. 1047
-
-
Kharchev, S.1
Marshakov, A.2
Mironov, A.3
-
49
-
-
0000015551
-
-
[25] S. Kharchev, A. Marshakov, A. Mironov et al., Landau-Ginzburg Topological Theories in the Framework of GKM (Generalized Kontsevich Model) and Equivalent Hierarchies, Mod. Phys. Lett. A 8 (1993) 1047, hep-th/9208046; S. Kharchev and A. Marshakov, Int. J. Mod. Phys. A10 (1995) 1219.
-
(1995)
Int. J. Mod. Phys.
, vol.A10
, pp. 1219
-
-
Kharchev, S.1
Marshakov, A.2
-
50
-
-
0001252135
-
On the relation between the Holomorphic prepotentials and the Quantum Moduli in SUSY gauge theories
-
hep-th/9510129
-
[26] J. Sonnenschein, S. Theisen and S. Yankielowicz, On the Relation between the Holomorphic Prepotentials and the Quantum Moduli in SUSY Gauge Theories, Phys. Lett. B 367 (1996) 145-150, hep-th/9510129.
-
(1996)
Phys. Lett. B
, vol.367
, pp. 145-150
-
-
Sonnenschein, J.1
Theisen, S.2
Yankielowicz, S.3
-
51
-
-
0001832945
-
On the geometry of the moduli space of Vacua in N = 2 supersymmetric Yang-Mills theory
-
hep-th/9408036
-
[27] A Ceresole, R. D'Auria and S. Ferrara, On the Geometry of the Moduli Space of Vacua in N = 2 Supersymmetric Yang-Mills Theory, Phys. Lett. B 339 (1994) 71, hep-th/9408036; A. Klemm, W. Lerche and S. Theisen, Nonperturbative Effective Actions of N = 2 Supersymmetric Gauge Theories, hep-th/9505150; M. Matone, Instantons and Recursion Relation in N = 2 Gauge Theory, Phys. Lett. B 357 (1995) 342, hep-th/9506102; Koebe 1/4-Theorem and Inequalities in N = 2 Super-QCD, Phys. Rev. D53 (1996) 7354-7358, hep-th/9506181; K. Itoh and S.K. Yang, Prepotentials in N = 2 SU(2) Supersymmetric Yang Mills Theory with Massless Hypermultiplets, Phys. Lett. B 366 (1996) 165-173, hep-th/9507144
-
(1994)
Phys. Lett. B
, vol.339
, pp. 71
-
-
Ceresole, A.1
D'Auria, R.2
Ferrara, S.3
-
52
-
-
0001832945
-
-
hep-th/9505150
-
[27] A Ceresole, R. D'Auria and S. Ferrara, On the Geometry of the Moduli Space of Vacua in N = 2 Supersymmetric Yang-Mills Theory, Phys. Lett. B 339 (1994) 71, hep-th/9408036; A. Klemm, W. Lerche and S. Theisen, Nonperturbative Effective Actions of N = 2 Supersymmetric Gauge Theories, hep-th/9505150; M. Matone, Instantons and Recursion Relation in N = 2 Gauge Theory, Phys. Lett. B 357 (1995) 342, hep-th/9506102; Koebe 1/4-Theorem and Inequalities in N = 2 Super-QCD, Phys. Rev. D53 (1996) 7354-7358, hep-th/9506181; K. Itoh and S.K. Yang, Prepotentials in N = 2 SU(2) Supersymmetric Yang Mills Theory with Massless Hypermultiplets, Phys. Lett. B 366 (1996) 165-173, hep-th/9507144
-
Nonperturbative Effective Actions of N = 2 Supersymmetric Gauge Theories
-
-
Klemm, A.1
Lerche, W.2
Theisen, S.3
-
53
-
-
0000904987
-
Instantons and recursion relation in N = 2 gauge theory
-
hep-th/9506102
-
[27] A Ceresole, R. D'Auria and S. Ferrara, On the Geometry of the Moduli Space of Vacua in N = 2 Supersymmetric Yang-Mills Theory, Phys. Lett. B 339 (1994) 71, hep-th/9408036; A. Klemm, W. Lerche and S. Theisen, Nonperturbative Effective Actions of N = 2 Supersymmetric Gauge Theories, hep-th/9505150; M. Matone, Instantons and Recursion Relation in N = 2 Gauge Theory, Phys. Lett. B 357 (1995) 342, hep-th/9506102; Koebe 1/4-Theorem and Inequalities in N = 2 Super-QCD, Phys. Rev. D53 (1996) 7354-7358, hep-th/9506181; K. Itoh and S.K. Yang, Prepotentials in N = 2 SU(2) Supersymmetric Yang Mills Theory with Massless Hypermultiplets, Phys. Lett. B 366 (1996) 165-173, hep-th/9507144
-
(1995)
Phys. Lett. B
, vol.357
, pp. 342
-
-
Matone, M.1
-
54
-
-
0000256566
-
Koebe 1/4-theorem and inequalities in N = 2 super-QCD
-
hep-th/9506181
-
[27] A Ceresole, R. D'Auria and S. Ferrara, On the Geometry of the Moduli Space of Vacua in N = 2 Supersymmetric Yang-Mills Theory, Phys. Lett. B 339 (1994) 71, hep-th/9408036; A. Klemm, W. Lerche and S. Theisen, Nonperturbative Effective Actions of N = 2 Supersymmetric Gauge Theories, hep-th/9505150; M. Matone, Instantons and Recursion Relation in N = 2 Gauge Theory, Phys. Lett. B 357 (1995) 342, hep-th/9506102; Koebe 1/4-Theorem and Inequalities in N = 2 Super-QCD, Phys. Rev. D53 (1996) 7354-7358, hep-th/9506181; K. Itoh and S.K. Yang, Prepotentials in N = 2 SU(2) Supersymmetric Yang Mills Theory with Massless Hypermultiplets, Phys. Lett. B 366 (1996) 165-173, hep-th/9507144
-
(1996)
Phys. Rev.
, vol.D53
, pp. 7354-7358
-
-
-
55
-
-
0010936066
-
Prepotentials in N = 2 SU(2) supersymmetric Yang Mills theory with Massless Hypermultiplets
-
hep-th/9507144
-
[27] A Ceresole, R. D'Auria and S. Ferrara, On the Geometry of the Moduli Space of Vacua in N = 2 Supersymmetric Yang-Mills Theory, Phys. Lett. B 339 (1994) 71, hep-th/9408036; A. Klemm, W. Lerche and S. Theisen, Nonperturbative Effective Actions of N = 2 Supersymmetric Gauge Theories, hep-th/9505150; M. Matone, Instantons and Recursion Relation in N = 2 Gauge Theory, Phys. Lett. B 357 (1995) 342, hep-th/9506102; Koebe 1/4-Theorem and Inequalities in N = 2 Super-QCD, Phys. Rev. D53 (1996) 7354-7358, hep-th/9506181; K. Itoh and S.K. Yang, Prepotentials in N = 2 SU(2) Supersymmetric Yang Mills Theory with Massless Hypermultiplets, Phys. Lett. B 366 (1996) 165-173, hep-th/9507144
-
(1996)
Phys. Lett. B
, vol.366
, pp. 165-173
-
-
Itoh, K.1
Yang, S.K.2
-
57
-
-
0008982194
-
The finite Toda Lattices
-
[29] V. Inosemtsev, The Finite Toda Lattices, Comm. Math. Phys. 121 (1989) 629-638.
-
(1989)
Comm. Math. Phys.
, vol.121
, pp. 629-638
-
-
Inosemtsev, V.1
-
58
-
-
13744264593
-
Massless black holes and conifolds in string theory
-
hep/th 9504090
-
[30] See, for example: A. Strominger, Massless Black Holes and Conifolds in String Theory. Nucl. Phys. B 451 (1995) 96-108, hep/th 9504090; S. Kachru, A. Klemm, W. Lerche, P. Mayr and C. Vafa, Nonperturbative Results on the Point-Particle Limit of N = 2 Heterotic String Compactification, Nucl. Phys. B 459 (1996) 537-558, hep/th 9508155; and ref. [11].
-
(1995)
Nucl. Phys. B
, vol.451
, pp. 96-108
-
-
Strominger, A.1
-
59
-
-
16144366518
-
Nonperturbative results on the Point-Particle limit of N = 2 Heterotic string compactification
-
hep/th 9508155; and ref. [11]
-
[30] See, for example: A. Strominger, Massless Black Holes and Conifolds in String Theory. Nucl. Phys. B 451 (1995) 96-108, hep/th 9504090; S. Kachru, A. Klemm, W. Lerche, P. Mayr and C. Vafa, Nonperturbative Results on the Point-Particle Limit of N = 2 Heterotic String Compactification, Nucl. Phys. B 459 (1996) 537-558, hep/th 9508155; and ref. [11].
-
(1996)
Nucl. Phys. B
, vol.459
, pp. 537-558
-
-
Kachru, S.1
Klemm, A.2
Lerche, W.3
Mayr, P.4
Vafa, C.5
|