메뉴 건너뛰기




Volumn 477, Issue 3, 1996, Pages 855-877

Integrability and Seiberg-Witten theory curves and periods

Author keywords

Elliptic Calogero system; Integrability; Low energy effective action; N = 2 supersymmetry; Toda system

Indexed keywords


EID: 0030596980     PISSN: 05503213     EISSN: None     Source Type: Journal    
DOI: 10.1016/0550-3213(96)00358-6     Document Type: Article
Times cited : (129)

References (59)
  • 1
    • 84957315297 scopus 로고
    • String Theory, what is it
    • [1] See, for example, A. Morozov, String Theory, what is it, Rus. Physics Uspekhi 35 (1992) 671 (v.162, No. 8, p. 84-175 of Russian edition); A. Morozov, Integrability and Matrix Models, ibid. 164 (1994) No. 1, 3-62 (Rus. ed.), hep-th/9303139.
    • (1992) Rus. Physics Uspekhi , vol.35 , pp. 671
    • Morozov, A.1
  • 2
    • 0011674703 scopus 로고    scopus 로고
    • of Russian edition
    • [1] See, for example, A. Morozov, String Theory, what is it, Rus. Physics Uspekhi 35 (1992) 671 (v.162, No. 8, p. 84-175 of Russian edition); A. Morozov, Integrability and Matrix Models, ibid. 164 (1994) No. 1, 3-62 (Rus. ed.), hep-th/9303139.
    • Rus. Physics Uspekhi , vol.162 , Issue.8 , pp. 84-175
  • 3
    • 84956226273 scopus 로고
    • Integrability and Matrix Models
    • (Rus. ed.), hep-th/9303139
    • [1] See, for example, A. Morozov, String Theory, what is it, Rus. Physics Uspekhi 35 (1992) 671 (v.162, No. 8, p. 84-175 of Russian edition); A. Morozov, Integrability and Matrix Models, ibid. 164 (1994) No. 1, 3-62 (Rus. ed.), hep-th/9303139.
    • (1994) Rus. Physics Uspekhi , vol.164 , Issue.1 , pp. 3-62
    • Morozov, A.1
  • 4
    • 13644276850 scopus 로고
    • Electric-magnetic duality, Monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory
    • Err.
    • [2] N. Seiberg and E. Witten, Electric-Magnetic Duality, Monopole Condensation and Confinement in N = 2 Supersymmetric Yang-Mills Theory, Nucl. Phys. B 426 (1994) 19-52; Err.; ibid. B 430 (1994) 485-486, hep-th/9407087.
    • (1994) Nucl. Phys. B , vol.426 , pp. 19-52
    • Seiberg, N.1    Witten, E.2
  • 5
    • 17044403583 scopus 로고
    • hep-th/9407087
    • [2] N. Seiberg and E. Witten, Electric-Magnetic Duality, Monopole Condensation and Confinement in N = 2 Supersymmetric Yang-Mills Theory, Nucl. Phys. B 426 (1994) 19-52; Err.; ibid. B 430 (1994) 485-486, hep-th/9407087.
    • (1994) Nucl. Phys. B , vol.430 , pp. 485-486
  • 6
    • 0346866199 scopus 로고
    • Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD
    • [3] N. Seiberg and E. Witten, Monopoles, Duality and Chiral Symmetry Breaking in N = 2 Supersymmetric QCD, ibid. B 431 (1994) 484-550, Nucl. Phys. B 431 (1994) 484-550, hep-th/9408099.
    • (1994) Nucl. Phys. B , vol.431 , pp. 484-550
    • Seiberg, N.1    Witten, E.2
  • 7
    • 0346866199 scopus 로고
    • hep-th/9408099
    • [3] N. Seiberg and E. Witten, Monopoles, Duality and Chiral Symmetry Breaking in N = 2 Supersymmetric QCD, ibid. B 431 (1994) 484-550, Nucl. Phys. B 431 (1994) 484-550, hep-th/9408099.
    • (1994) Nucl. Phys. B , vol.431 , pp. 484-550
  • 8
    • 0000263333 scopus 로고
    • Integrability and exact Seiberg-Witten solution
    • hep-th/9505035
    • [4] A. Gorsky, I. Krichever, A. Marshakov, A. Mironov et al., Integrability and Exact Seiberg-Witten Solution, Phys. Lett. B 355 (1995) 466-474, hep-th/9505035.
    • (1995) Phys. Lett. B , vol.355 , pp. 466-474
    • Gorsky, A.1    Krichever, I.2    Marshakov, A.3    Mironov, A.4
  • 9
    • 0030583978 scopus 로고    scopus 로고
    • Integrable systems and supersymmetric gauge theories
    • hep-th/9509161
    • [5] E. Martinec and N. Warner, Integrable Systems and Supersymmetric Gauge Theories, Nucl. Phys. B 459 (1996) 97-112, hep-th/9509161.
    • (1996) Nucl. Phys. B , vol.459 , pp. 97-112
    • Martinec, E.1    Warner, N.2
  • 10
    • 0000522045 scopus 로고    scopus 로고
    • Whitham-Toda hierarchy and N = 2 supersymmetric Yang-Mills theory
    • hep-th/9509162
    • [6] T. Nakatsu and K. Takasaki, Whitham-Toda Hierarchy and N = 2 Supersymmetric Yang-Mills Theory, Mod. Phys. Lett. A 11 (1996) 157-168, hep-th/9509162.
    • (1996) Mod. Phys. Lett. A , vol.11 , pp. 157-168
    • Nakatsu, T.1    Takasaki, K.2
  • 12
    • 0030569824 scopus 로고    scopus 로고
    • Supersymmetric Yang-Mills theory and integrable systems
    • IASSNS-HEP-95-78, hep-th/9510101
    • [8] R. Donagi and E. Witten, Supersymmetric Yang-Mills Theory and Integrable Systems, IASSNS-HEP-95-78, Nucl. Phys. B 460 (1996) 299-334, hep-th/9510101.
    • (1996) Nucl. Phys. B , vol.460 , pp. 299-334
    • Donagi, R.1    Witten, E.2
  • 13
    • 0002547407 scopus 로고    scopus 로고
    • Integrable structures in supersymmetric gauge and string theory
    • hep-th/9510204
    • [9] E. Martinec, Integrable Structures in Supersymmetric Gauge and String Theory, Phys. Lett. B 367 (1996) 91-96, hep-th/9510204.
    • (1996) Phys. Lett. B , vol.367 , pp. 91-96
    • Martinec, E.1
  • 16
    • 0043290689 scopus 로고
    • Simple singularities and N = 2 supersymmetric Yang-Mills theory
    • hep-th/9411048
    • [12] A. Klemm, W. Lerche, S. Theisen and S. Yankielowicz, Simple Singularities and N = 2 Supersymmetric Yang-Mills Theory, Phys. Lett. B 344 (1995) 169, hep-th/9411048.
    • (1995) Phys. Lett. B , vol.344 , pp. 169
    • Klemm, A.1    Lerche, W.2    Theisen, S.3    Yankielowicz, S.4
  • 17
    • 4243445460 scopus 로고
    • The vacuum structure and spectrum of N = 2 supersymmetric SU(N) gauge theory
    • hep-th/9411057
    • [13] P. Agyres and A. Faraggi, The Vacuum Structure and Spectrum of N = 2 Supersymmetric SU(N) Gauge Theory, Phys. Rev. Lett. 73 (1995) 3931, hep-th/9411057.
    • (1995) Phys. Rev. Lett. , vol.73 , pp. 3931
    • Agyres, P.1    Faraggi, A.2
  • 18
    • 0001316347 scopus 로고
    • The moduli space and Monodromies of N = 2 supersymmetric SO(2R + 1) Yang-Mills theory
    • hep-th/9504102
    • [14] U. H. Danielsson and B. Sundborg, The Moduli Space and Monodromies of N = 2 Supersymmetric SO(2R + 1) Yang-Mills Theory, Phys. Lett. B 358 (1995) 273-280, hep-th/9504102.
    • (1995) Phys. Lett. B , vol.358 , pp. 273-280
    • Danielsson, U.H.1    Sundborg, B.2
  • 19
    • 0010870080 scopus 로고
    • On the Monodromies of N = 2 supersymmetric Yang-Mills theory with gauge group SO(2n)
    • hep-th/9507008
    • [15] A. Brandhuber and K. Landsteiner, On the Monodromies of N = 2 Supersymmetric Yang-Mills Theory with Gauge Group SO(2n), Phys. Lett. B 358 (1995) 73-80, hep-th/9507008.
    • (1995) Phys. Lett. B , vol.358 , pp. 73-80
    • Brandhuber, A.1    Landsteiner, K.2
  • 20
    • 0000464605 scopus 로고
    • c) gauge theories
    • hep-th/9505075
    • c) Gauge Theories, Nucl. Phys. B 452 (1995) 283-312, hep-th/9505075.
    • (1995) Nucl. Phys. B , vol.452 , pp. 283-312
    • Hanany, A.1    Oz, Y.2
  • 21
    • 33646057161 scopus 로고
    • Supersymmetry Algebra that includes topological charges
    • [17] D. Olive and E. Witten, Supersymmetry Algebra that Includes Topological Charges, Phys. Lett. B 78 (1978) 97-101.
    • (1978) Phys. Lett. B , vol.78 , pp. 97-101
    • Olive, D.1    Witten, E.2
  • 22
    • 0011546968 scopus 로고
    • Classical integrable finite-dimensional systems related to lie Algebras
    • [18] The classical review paper on integrable systems of particles is: M. Olshanetsky and A. Perelomov, Classical Integrable Finite-Dimensional Systems Related to Lie Algebras, Phys. Rep. 71C (1981) 97-101.
    • (1981) Phys. Rep. , vol.71 C , pp. 97-101
    • Olshanetsky, M.1    Perelomov, A.2
  • 23
    • 0010989303 scopus 로고    scopus 로고
    • Methods of algebraic geometry in the theory of nonlinear equations
    • [19] The relevant chapter of integrability theory is very old and the number of references is very large. We mention just a few papers, directly related to our consideration: I. Krichever, Methods of Algebraic Geometry in the Theory of Nonlinear Equations, Sov. Math. Surveys, 32 (1977) 185-213; I. Krichever, The Integration of Non-linear Equations by the Methods of Algebraic Geometry, Funk. Anal. and Appl. 11 (1977) No. 1 15-31 (Rus. ed.); I. Krichever, Elliptic Solutions of the Kadomtsev-Petviashvili Equation and Integrable System of Particles, Funk. Anal. and Appl. 14 (1980) 282-290 (No. 4 15-31 of Rus. ed.); B. Dubrovin, Theta Functions and Non-linear Equations, Sov. Math. Surveys, 36 (1981) No. 2 11-80 (Rus. ed.); H. Flaschka and D. McLaughlin, Canonicaly Conjugate Variables for the KdV Equation and the Toda Lattice with Periodic Boundary Conditions, Progr. Theor. Phys. 55 (1976) 438-456; M. Adler and P. van Moerbeke, Completely Integrable Systems, Euclidean Lie Algebras and Curves, Adv. Math. 38 (1980) 267-317; M. Adler and P. van Moerbeke, Linearization of Hamiltonian Systems, Jacobi Varieties and Representation Theory, ibid. 318-379. O. Babelon, E. Billey, I. Krichever and M. Talon, Spin Generalization of the Calogero-Moser System and the Matrix KP Equation, hep-th/9411160.
    • (1977) Sov. Math. Surveys , vol.32 , pp. 185-213
    • Krichever, I.1
  • 24
    • 34250285119 scopus 로고
    • The integration of non-linear equations by the methods of algebraic geometry
    • Rus. ed.
    • [19] The relevant chapter of integrability theory is very old and the number of references is very large. We mention just a few papers, directly related to our consideration: I. Krichever, Methods of Algebraic Geometry in the Theory of Nonlinear Equations, Sov. Math. Surveys, 32 (1977) 185-213; I. Krichever, The Integration of Non-linear Equations by the Methods of Algebraic Geometry, Funk. Anal. and Appl. 11 (1977) No. 1 15-31 (Rus. ed.); I. Krichever, Elliptic Solutions of the Kadomtsev-Petviashvili Equation and Integrable System of Particles, Funk. Anal. and Appl. 14 (1980) 282-290 (No. 4 15-31 of Rus. ed.); B. Dubrovin, Theta Functions and Non-linear Equations, Sov. Math. Surveys, 36 (1981) No. 2 11-80 (Rus. ed.); H. Flaschka and D. McLaughlin, Canonicaly Conjugate Variables for the KdV Equation and the Toda Lattice with Periodic Boundary Conditions, Progr. Theor. Phys. 55 (1976) 438-456; M. Adler and P. van Moerbeke, Completely Integrable Systems, Euclidean Lie Algebras and Curves, Adv. Math. 38 (1980) 267-317; M. Adler and P. van Moerbeke, Linearization of Hamiltonian Systems, Jacobi Varieties and Representation Theory, ibid. 318-379. O. Babelon, E. Billey, I. Krichever and M. Talon, Spin Generalization of the Calogero-Moser System and the Matrix KP Equation, hep-th/9411160.
    • (1977) Funk. Anal. and Appl. , vol.11 , Issue.1 , pp. 15-31
    • Krichever, I.1
  • 25
    • 0345860250 scopus 로고
    • Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable system of particles
    • No. 4 15-31 of Rus. ed.
    • [19] The relevant chapter of integrability theory is very old and the number of references is very large. We mention just a few papers, directly related to our consideration: I. Krichever, Methods of Algebraic Geometry in the Theory of Nonlinear Equations, Sov. Math. Surveys, 32 (1977) 185-213; I. Krichever, The Integration of Non-linear Equations by the Methods of Algebraic Geometry, Funk. Anal. and Appl. 11 (1977) No. 1 15-31 (Rus. ed.); I. Krichever, Elliptic Solutions of the Kadomtsev-Petviashvili Equation and Integrable System of Particles, Funk. Anal. and Appl. 14 (1980) 282-290 (No. 4 15-31 of Rus. ed.); B. Dubrovin, Theta Functions and Non-linear Equations, Sov. Math. Surveys, 36 (1981) No. 2 11-80 (Rus. ed.); H. Flaschka and D. McLaughlin, Canonicaly Conjugate Variables for the KdV Equation and the Toda Lattice with Periodic Boundary Conditions, Progr. Theor. Phys. 55 (1976) 438-456; M. Adler and P. van Moerbeke, Completely Integrable Systems, Euclidean Lie Algebras and Curves, Adv. Math. 38 (1980) 267-317; M. Adler and P. van Moerbeke, Linearization of Hamiltonian Systems, Jacobi Varieties and Representation Theory, ibid. 318-379. O. Babelon, E. Billey, I. Krichever and M. Talon, Spin Generalization of the Calogero-Moser System and the Matrix KP Equation, hep-th/9411160.
    • (1980) Funk. Anal. and Appl. , vol.14 , pp. 282-290
    • Krichever, I.1
  • 26
    • 84928007477 scopus 로고
    • Theta functions and non-linear equations
    • Rus. ed.
    • [19] The relevant chapter of integrability theory is very old and the number of references is very large. We mention just a few papers, directly related to our consideration: I. Krichever, Methods of Algebraic Geometry in the Theory of Nonlinear Equations, Sov. Math. Surveys, 32 (1977) 185-213; I. Krichever, The Integration of Non-linear Equations by the Methods of Algebraic Geometry, Funk. Anal. and Appl. 11 (1977) No. 1 15-31 (Rus. ed.); I. Krichever, Elliptic Solutions of the Kadomtsev-Petviashvili Equation and Integrable System of Particles, Funk. Anal. and Appl. 14 (1980) 282-290 (No. 4 15-31 of Rus. ed.); B. Dubrovin, Theta Functions and Non-linear Equations, Sov. Math. Surveys, 36 (1981) No. 2 11-80 (Rus. ed.); H. Flaschka and D. McLaughlin, Canonicaly Conjugate Variables for the KdV Equation and the Toda Lattice with Periodic Boundary Conditions, Progr. Theor. Phys. 55 (1976) 438-456; M. Adler and P. van Moerbeke, Completely Integrable Systems, Euclidean Lie Algebras and Curves, Adv. Math. 38 (1980) 267-317; M. Adler and P. van Moerbeke, Linearization of Hamiltonian Systems, Jacobi Varieties and Representation Theory, ibid. 318-379. O. Babelon, E. Billey, I. Krichever and M. Talon, Spin Generalization of the Calogero-Moser System and the Matrix KP Equation, hep-th/9411160.
    • (1981) Sov. Math. Surveys , vol.36 , Issue.2 , pp. 11-80
    • Dubrovin, B.1
  • 27
    • 0010989303 scopus 로고    scopus 로고
    • Canonicaly conjugate variables for the KdV equation and the Toda Lattice with periodic boundary conditions
    • [19] The relevant chapter of integrability theory is very old and the number of references is very large. We mention just a few papers, directly related to our consideration: I. Krichever, Methods of Algebraic Geometry in the Theory of Nonlinear Equations, Sov. Math. Surveys, 32 (1977) 185-213; I. Krichever, The Integration of Non-linear Equations by the Methods of Algebraic Geometry, Funk. Anal. and Appl. 11 (1977) No. 1 15-31 (Rus. ed.); I. Krichever, Elliptic Solutions of the Kadomtsev-Petviashvili Equation and Integrable System of Particles, Funk. Anal. and Appl. 14 (1980) 282-290 (No. 4 15-31 of Rus. ed.); B. Dubrovin, Theta Functions and Non-linear Equations, Sov. Math. Surveys, 36 (1981) No. 2 11-80 (Rus. ed.); H. Flaschka and D. McLaughlin, Canonicaly Conjugate Variables for the KdV Equation and the Toda Lattice with Periodic Boundary Conditions, Progr. Theor. Phys. 55 (1976) 438-456; M. Adler and P. van Moerbeke, Completely Integrable Systems, Euclidean Lie Algebras and Curves, Adv. Math. 38 (1980) 267-317; M. Adler and P. van Moerbeke, Linearization of Hamiltonian Systems, Jacobi Varieties and Representation Theory, ibid. 318-379. O. Babelon, E. Billey, I. Krichever and M. Talon, Spin Generalization of the Calogero-Moser System and the Matrix KP Equation, hep-th/9411160.
    • (1976) Progr. Theor. Phys. , vol.55 , pp. 438-456
    • Flaschka, H.1    McLaughlin, D.2
  • 28
    • 49149147606 scopus 로고
    • Completely integrable systems, Euclidean lie algebras and curves
    • [19] The relevant chapter of integrability theory is very old and the number of references is very large. We mention just a few papers, directly related to our consideration: I. Krichever, Methods of Algebraic Geometry in the Theory of Nonlinear Equations, Sov. Math. Surveys, 32 (1977) 185-213; I. Krichever, The Integration of Non-linear Equations by the Methods of Algebraic Geometry, Funk. Anal. and Appl. 11 (1977) No. 1 15-31 (Rus. ed.); I. Krichever, Elliptic Solutions of the Kadomtsev-Petviashvili Equation and Integrable System of Particles, Funk. Anal. and Appl. 14 (1980) 282-290 (No. 4 15-31 of Rus. ed.); B. Dubrovin, Theta Functions and Non-linear Equations, Sov. Math. Surveys, 36 (1981) No. 2 11-80 (Rus. ed.); H. Flaschka and D. McLaughlin, Canonicaly Conjugate Variables for the KdV Equation and the Toda Lattice with Periodic Boundary Conditions, Progr. Theor. Phys. 55 (1976) 438-456; M. Adler and P. van Moerbeke, Completely Integrable Systems, Euclidean Lie Algebras and Curves, Adv. Math. 38 (1980) 267-317; M. Adler and P. van Moerbeke, Linearization of Hamiltonian Systems, Jacobi Varieties and Representation Theory, ibid. 318-379. O. Babelon, E. Billey, I. Krichever and M. Talon, Spin Generalization of the Calogero-Moser System and the Matrix KP Equation, hep-th/9411160.
    • (1980) Adv. Math. , vol.38 , pp. 267-317
    • Adler, M.1    Van Moerbeke, P.2
  • 29
    • 49149144090 scopus 로고    scopus 로고
    • Linearization of hamiltonian systems, Jacobi varieties and representation theory
    • [19] The relevant chapter of integrability theory is very old and the number of references is very large. We mention just a few papers, directly related to our consideration: I. Krichever, Methods of Algebraic Geometry in the Theory of Nonlinear Equations, Sov. Math. Surveys, 32 (1977) 185-213; I. Krichever, The Integration of Non-linear Equations by the Methods of Algebraic Geometry, Funk. Anal. and Appl. 11 (1977) No. 1 15-31 (Rus. ed.); I. Krichever, Elliptic Solutions of the Kadomtsev-Petviashvili Equation and Integrable System of Particles, Funk. Anal. and Appl. 14 (1980) 282-290 (No. 4 15-31 of Rus. ed.); B. Dubrovin, Theta Functions and Non-linear Equations, Sov. Math. Surveys, 36 (1981) No. 2 11-80 (Rus. ed.); H. Flaschka and D. McLaughlin, Canonicaly Conjugate Variables for the KdV Equation and the Toda Lattice with Periodic Boundary Conditions, Progr. Theor. Phys. 55 (1976) 438-456; M. Adler and P. van Moerbeke, Completely Integrable Systems, Euclidean Lie Algebras and Curves, Adv. Math. 38 (1980) 267-317; M. Adler and P. van Moerbeke, Linearization of Hamiltonian Systems, Jacobi Varieties and Representation Theory, ibid. 318-379. O. Babelon, E. Billey, I. Krichever and M. Talon, Spin Generalization of the Calogero-Moser System and the Matrix KP Equation, hep-th/9411160.
    • Adv. Math. , pp. 318-379
    • Adler, M.1    Van Moerbeke, P.2
  • 30
    • 0010989303 scopus 로고    scopus 로고
    • hep-th/9411160
    • [19] The relevant chapter of integrability theory is very old and the number of references is very large. We mention just a few papers, directly related to our consideration: I. Krichever, Methods of Algebraic Geometry in the Theory of Nonlinear Equations, Sov. Math. Surveys, 32 (1977) 185-213; I. Krichever, The Integration of Non-linear Equations by the Methods of Algebraic Geometry, Funk. Anal. and Appl. 11 (1977) No. 1 15-31 (Rus. ed.); I. Krichever, Elliptic Solutions of the Kadomtsev-Petviashvili Equation and Integrable System of Particles, Funk. Anal. and Appl. 14 (1980) 282-290 (No. 4 15-31 of Rus. ed.); B. Dubrovin, Theta Functions and Non-linear Equations, Sov. Math. Surveys, 36 (1981) No. 2 11-80 (Rus. ed.); H. Flaschka and D. McLaughlin, Canonicaly Conjugate Variables for the KdV Equation and the Toda Lattice with Periodic Boundary Conditions, Progr. Theor. Phys. 55 (1976) 438-456; M. Adler and P. van Moerbeke, Completely Integrable Systems, Euclidean Lie Algebras and Curves, Adv. Math. 38 (1980) 267-317; M. Adler and P. van Moerbeke, Linearization of Hamiltonian Systems, Jacobi Varieties and Representation Theory, ibid. 318-379. O. Babelon, E. Billey, I. Krichever and M. Talon, Spin Generalization of the Calogero-Moser System and the Matrix KP Equation, hep-th/9411160.
    • Spin Generalization of the Calogero-Moser System and the Matrix KP Equation
    • Babelon, O.1    Billey, E.2    Krichever, I.3    Talon, M.4
  • 31
    • 84972556273 scopus 로고    scopus 로고
    • Stable bundles and integrable systems
    • [20] The modern-style language in this field uses the notion of Hitchin systems, which emphasizes interpretation of Lax equation as a flat connection condition. A few directly relevant references are: N. Hitchin, Stable Bundles and Integrable Systems, Duke Math. Journ. 54 (1987) 91-114; N. Hitchin, Flat Connections and Geometric Quantization, Comm.Math. Phys. 131 (1990) 347-380; E. Markman, Spectral Curves and Integrable Systems, Comp. Math. 93 (1994) 255-290; A. Beilinson and V. Drinfeld, Quantization of Hitchin's Fibration and Langlands Program, preprint (1994); B. Feigin and E. Frenkel, Affine Kac-Moody Algebras at the Critical Level and Gelfand-Dikii Algebras, Int. J. Mod. Phys. A7, Suppl.1A (1992) 197-215; B. Enriquez and V. Roubtsov, Hitchin Systems, Higher Gaudin Operators and R-Matrices, alggeom/9503010; N. Nekrasov, Holomorphic Bundles and Many-Body Systems, hep-th/9503157; M. Olshanetsky Generalized Hitchin Systems and the Knizhnik-Zamolodchikov-Bernard Equation on Elliptic Curves, hep-th/9510143; O. Sheinman, hep-th/9510165; see also [8] and [9].
    • (1987) Duke Math. Journ. , vol.54 , pp. 91-114
    • Hitchin, N.1
  • 32
    • 1542477264 scopus 로고
    • Flat connections and geometric quantization
    • [20] The modern-style language in this field uses the notion of Hitchin systems, which emphasizes interpretation of Lax equation as a flat connection condition. A few directly relevant references are: N. Hitchin, Stable Bundles and Integrable Systems, Duke Math. Journ. 54 (1987) 91-114; N. Hitchin, Flat Connections and Geometric Quantization, Comm.Math. Phys. 131 (1990) 347-380; E. Markman, Spectral Curves and Integrable Systems, Comp. Math. 93 (1994) 255-290; A. Beilinson and V. Drinfeld, Quantization of Hitchin's Fibration and Langlands Program, preprint (1994); B. Feigin and E. Frenkel, Affine Kac-Moody Algebras at the Critical Level and Gelfand-Dikii Algebras, Int. J. Mod. Phys. A7, Suppl.1A (1992) 197-215; B. Enriquez and V. Roubtsov, Hitchin Systems, Higher Gaudin Operators and R-Matrices, alggeom/9503010; N. Nekrasov, Holomorphic Bundles and Many-Body Systems, hep-th/9503157; M. Olshanetsky Generalized Hitchin Systems and the Knizhnik-Zamolodchikov-Bernard Equation on Elliptic Curves, hep-th/9510143; O. Sheinman, hep-th/9510165; see also [8] and [9].
    • (1990) Comm.Math. Phys. , vol.131 , pp. 347-380
    • Hitchin, N.1
  • 33
    • 84972556273 scopus 로고    scopus 로고
    • Spectral curves and integrable systems
    • [20] The modern-style language in this field uses the notion of Hitchin systems, which emphasizes interpretation of Lax equation as a flat connection condition. A few directly relevant references are: N. Hitchin, Stable Bundles and Integrable Systems, Duke Math. Journ. 54 (1987) 91-114; N. Hitchin, Flat Connections and Geometric Quantization, Comm.Math. Phys. 131 (1990) 347-380; E. Markman, Spectral Curves and Integrable Systems, Comp. Math. 93 (1994) 255-290; A. Beilinson and V. Drinfeld, Quantization of Hitchin's Fibration and Langlands Program, preprint (1994); B. Feigin and E. Frenkel, Affine Kac-Moody Algebras at the Critical Level and Gelfand-Dikii Algebras, Int. J. Mod. Phys. A7, Suppl.1A (1992) 197-215; B. Enriquez and V. Roubtsov, Hitchin Systems, Higher Gaudin Operators and R-Matrices, alggeom/9503010; N. Nekrasov, Holomorphic Bundles and Many-Body Systems, hep-th/9503157; M. Olshanetsky Generalized Hitchin Systems and the Knizhnik-Zamolodchikov-Bernard Equation on Elliptic Curves, hep-th/9510143; O. Sheinman, hep-th/9510165; see also [8] and [9].
    • (1994) Comp. Math. , vol.93 , pp. 255-290
    • Markman, E.1
  • 34
    • 84972556273 scopus 로고    scopus 로고
    • preprint
    • [20] The modern-style language in this field uses the notion of Hitchin systems, which emphasizes interpretation of Lax equation as a flat connection condition. A few directly relevant references are: N. Hitchin, Stable Bundles and Integrable Systems, Duke Math. Journ. 54 (1987) 91-114; N. Hitchin, Flat Connections and Geometric Quantization, Comm.Math. Phys. 131 (1990) 347-380; E. Markman, Spectral Curves and Integrable Systems, Comp. Math. 93 (1994) 255-290; A. Beilinson and V. Drinfeld, Quantization of Hitchin's Fibration and Langlands Program, preprint (1994); B. Feigin and E. Frenkel, Affine Kac-Moody Algebras at the Critical Level and Gelfand-Dikii Algebras, Int. J. Mod. Phys. A7, Suppl.1A (1992) 197-215; B. Enriquez and V. Roubtsov, Hitchin Systems, Higher Gaudin Operators and R-Matrices, alggeom/9503010; N. Nekrasov, Holomorphic Bundles and Many-Body Systems, hep-th/9503157; M. Olshanetsky Generalized Hitchin Systems and the Knizhnik-Zamolodchikov-Bernard Equation on Elliptic Curves, hep-th/9510143; O. Sheinman, hep-th/9510165; see also [8] and [9].
    • (1994) Quantization of Hitchin's Fibration and Langlands Program
    • Beilinson, A.1    Drinfeld, V.2
  • 35
    • 84972556273 scopus 로고    scopus 로고
    • Affine Kac-Moody algebras at the critical level and Gelfand-Dikii algebras
    • [20] The modern-style language in this field uses the notion of Hitchin systems, which emphasizes interpretation of Lax equation as a flat connection condition. A few directly relevant references are: N. Hitchin, Stable Bundles and Integrable Systems, Duke Math. Journ. 54 (1987) 91-114; N. Hitchin, Flat Connections and Geometric Quantization, Comm.Math. Phys. 131 (1990) 347-380; E. Markman, Spectral Curves and Integrable Systems, Comp. Math. 93 (1994) 255-290; A. Beilinson and V. Drinfeld, Quantization of Hitchin's Fibration and Langlands Program, preprint (1994); B. Feigin and E. Frenkel, Affine Kac-Moody Algebras at the Critical Level and Gelfand-Dikii Algebras, Int. J. Mod. Phys. A7, Suppl.1A (1992) 197-215; B. Enriquez and V. Roubtsov, Hitchin Systems, Higher Gaudin Operators and R-Matrices, alggeom/9503010; N. Nekrasov, Holomorphic Bundles and Many-Body Systems, hep-th/9503157; M. Olshanetsky Generalized Hitchin Systems and the Knizhnik-Zamolodchikov-Bernard Equation on Elliptic Curves, hep-th/9510143; O. Sheinman, hep-th/9510165; see also [8] and [9].
    • (1992) Int. J. Mod. Phys. , vol.A7 , Issue.SUPPL.1A , pp. 197-215
    • Feigin, B.1    Frenkel, E.2
  • 36
    • 84972556273 scopus 로고    scopus 로고
    • alggeom/9503010
    • [20] The modern-style language in this field uses the notion of Hitchin systems, which emphasizes interpretation of Lax equation as a flat connection condition. A few directly relevant references are: N. Hitchin, Stable Bundles and Integrable Systems, Duke Math. Journ. 54 (1987) 91-114; N. Hitchin, Flat Connections and Geometric Quantization, Comm.Math. Phys. 131 (1990) 347-380; E. Markman, Spectral Curves and Integrable Systems, Comp. Math. 93 (1994) 255-290; A. Beilinson and V. Drinfeld, Quantization of Hitchin's Fibration and Langlands Program, preprint (1994); B. Feigin and E. Frenkel, Affine Kac-Moody Algebras at the Critical Level and Gelfand-Dikii Algebras, Int. J. Mod. Phys. A7, Suppl.1A (1992) 197-215; B. Enriquez and V. Roubtsov, Hitchin Systems, Higher Gaudin Operators and R-Matrices, alggeom/9503010; N. Nekrasov, Holomorphic Bundles and Many-Body Systems, hep-th/9503157; M. Olshanetsky Generalized Hitchin Systems and the Knizhnik-Zamolodchikov-Bernard Equation on Elliptic Curves, hep-th/9510143; O. Sheinman, hep-th/9510165; see also [8] and [9].
    • Hitchin Systems, Higher Gaudin Operators and R-Matrices
    • Enriquez, B.1    Roubtsov, V.2
  • 37
    • 84972556273 scopus 로고    scopus 로고
    • hep-th/9503157
    • [20] The modern-style language in this field uses the notion of Hitchin systems, which emphasizes interpretation of Lax equation as a flat connection condition. A few directly relevant references are: N. Hitchin, Stable Bundles and Integrable Systems, Duke Math. Journ. 54 (1987) 91-114; N. Hitchin, Flat Connections and Geometric Quantization, Comm.Math. Phys. 131 (1990) 347-380; E. Markman, Spectral Curves and Integrable Systems, Comp. Math. 93 (1994) 255-290; A. Beilinson and V. Drinfeld, Quantization of Hitchin's Fibration and Langlands Program, preprint (1994); B. Feigin and E. Frenkel, Affine Kac-Moody Algebras at the Critical Level and Gelfand-Dikii Algebras, Int. J. Mod. Phys. A7, Suppl.1A (1992) 197-215; B. Enriquez and V. Roubtsov, Hitchin Systems, Higher Gaudin Operators and R-Matrices, alggeom/9503010; N. Nekrasov, Holomorphic Bundles and Many-Body Systems, hep-th/9503157; M. Olshanetsky Generalized Hitchin Systems and the Knizhnik-Zamolodchikov-Bernard Equation on Elliptic Curves, hep-th/9510143; O. Sheinman, hep-th/9510165; see also [8] and [9].
    • Holomorphic Bundles and Many-Body Systems
    • Nekrasov, N.1
  • 38
    • 84972556273 scopus 로고    scopus 로고
    • hep-th/9510143
    • [20] The modern-style language in this field uses the notion of Hitchin systems, which emphasizes interpretation of Lax equation as a flat connection condition. A few directly relevant references are: N. Hitchin, Stable Bundles and Integrable Systems, Duke Math. Journ. 54 (1987) 91-114; N. Hitchin, Flat Connections and Geometric Quantization, Comm.Math. Phys. 131 (1990) 347-380; E. Markman, Spectral Curves and Integrable Systems, Comp. Math. 93 (1994) 255-290; A. Beilinson and V. Drinfeld, Quantization of Hitchin's Fibration and Langlands Program, preprint (1994); B. Feigin and E. Frenkel, Affine Kac-Moody Algebras at the Critical Level and Gelfand-Dikii Algebras, Int. J. Mod. Phys. A7, Suppl.1A (1992) 197-215; B. Enriquez and V. Roubtsov, Hitchin Systems, Higher Gaudin Operators and R-Matrices, alggeom/9503010; N. Nekrasov, Holomorphic Bundles and Many-Body Systems, hep-th/9503157; M. Olshanetsky Generalized Hitchin Systems and the Knizhnik-Zamolodchikov-Bernard Equation on Elliptic Curves, hep-th/9510143; O. Sheinman, hep-th/9510165; see also [8] and [9].
    • Generalized Hitchin Systems and the Knizhnik-Zamolodchikov-Bernard Equation on Elliptic Curves
    • Olshanetsky, M.1
  • 39
    • 84972556273 scopus 로고    scopus 로고
    • hep-th/9510165; see also [8] and [9]
    • [20] The modern-style language in this field uses the notion of Hitchin systems, which emphasizes interpretation of Lax equation as a flat connection condition. A few directly relevant references are: N. Hitchin, Stable Bundles and Integrable Systems, Duke Math. Journ. 54 (1987) 91-114; N. Hitchin, Flat Connections and Geometric Quantization, Comm.Math. Phys. 131 (1990) 347-380; E. Markman, Spectral Curves and Integrable Systems, Comp. Math. 93 (1994) 255-290; A. Beilinson and V. Drinfeld, Quantization of Hitchin's Fibration and Langlands Program, preprint (1994); B. Feigin and E. Frenkel, Affine Kac-Moody Algebras at the Critical Level and Gelfand-Dikii Algebras, Int. J. Mod. Phys. A7, Suppl.1A (1992) 197-215; B. Enriquez and V. Roubtsov, Hitchin Systems, Higher Gaudin Operators and R-Matrices, alggeom/9503010; N. Nekrasov, Holomorphic Bundles and Many-Body Systems, hep-th/9503157; M. Olshanetsky Generalized Hitchin Systems and the Knizhnik-Zamolodchikov-Bernard Equation on Elliptic Curves, hep-th/9510143; O. Sheinman, hep-th/9510165; see also [8] and [9].
    • Sheinman, O.1
  • 40
    • 0011605088 scopus 로고
    • (Rus. ed.); ref. [23] below
    • [21] See the following papers for general description and references: B. Dubrovin and S. Novikov, Sov. Math. Surveys 36 (1981) No. 2 12 (Rus. ed.); ref. [23] below.
    • (1981) Sov. Math. Surveys , vol.36 , Issue.2 , pp. 12
    • Dubrovin, B.1    Novikov, S.2
  • 41
    • 0003868554 scopus 로고    scopus 로고
    • SISSA-89/94/FM
    • [22] B. Dubrovin, Geometry of 2d Topological Field Theories, SISSA-89/94/FM; B. Dubrovin, Integrable Systems in Topological Field Theory, Nucl. Phys. B 379 (1992) 627-689; B. Dubrovin, Hamiltonian Formalism of Witham-type Hierarchies in Topological Landau-Ginzburg Model, Comm. Math. Phys. 145 (1992) 195.
    • Geometry of 2d Topological Field Theories
    • Dubrovin, B.1
  • 42
    • 0347427534 scopus 로고
    • Integrable systems in topological field theory
    • [22] B. Dubrovin, Geometry of 2d Topological Field Theories, SISSA-89/94/FM; B. Dubrovin, Integrable Systems in Topological Field Theory, Nucl. Phys. B 379 (1992) 627-689; B. Dubrovin, Hamiltonian Formalism of Witham-type Hierarchies in Topological Landau-Ginzburg Model, Comm. Math. Phys. 145 (1992) 195.
    • (1992) Nucl. Phys. B , vol.379 , pp. 627-689
    • Dubrovin, B.1
  • 43
    • 0011401791 scopus 로고
    • Hamiltonian formalism of Witham-type hierarchies in topological Landau-Ginzburg model
    • [22] B. Dubrovin, Geometry of 2d Topological Field Theories, SISSA-89/94/FM; B. Dubrovin, Integrable Systems in Topological Field Theory, Nucl. Phys. B 379 (1992) 627-689; B. Dubrovin, Hamiltonian Formalism of Witham-type Hierarchies in Topological Landau-Ginzburg Model, Comm. Math. Phys. 145 (1992) 195.
    • (1992) Comm. Math. Phys. , vol.145 , pp. 195
    • Dubrovin, B.1
  • 45
    • 0037512871 scopus 로고    scopus 로고
    • The dispersionless Lax equations in topological minimal models
    • [23] I. Krichever, The τ-function of the Universal Whitham Hierarchy, Matrix Models and Topological Field Theories, hep-th/9205110; I. Krichever, The Dispersionless Lax Equations in Topological Minimal Models, Comm. Math. Phys. 143 (1992) 415-429.
    • (1992) Comm. Math. Phys. , vol.143 , pp. 415-429
    • Krichever, I.1
  • 46
    • 0011615209 scopus 로고
    • [24] A. Losev and I. Polyubin, JETP Lett. 58 (1993) 573, Int. J. Mod. Phys. A10 (1995) 4161-4178, hep-th/9305079.
    • (1993) JETP Lett. , vol.58 , pp. 573
    • Losev, A.1    Polyubin, I.2
  • 47
    • 0000284867 scopus 로고
    • hep-th/9305079
    • [24] A. Losev and I. Polyubin, JETP Lett. 58 (1993) 573, Int. J. Mod. Phys. A10 (1995) 4161-4178, hep-th/9305079.
    • (1995) Int. J. Mod. Phys. , vol.A10 , pp. 4161-4178
  • 48
    • 0001564216 scopus 로고
    • Landau-Ginzburg topological theories in the framework of GKM (Generalized Kontsevich Model) and equivalent hierarchies
    • hep-th/9208046
    • [25] S. Kharchev, A. Marshakov, A. Mironov et al., Landau-Ginzburg Topological Theories in the Framework of GKM (Generalized Kontsevich Model) and Equivalent Hierarchies, Mod. Phys. Lett. A 8 (1993) 1047, hep-th/9208046; S. Kharchev and A. Marshakov, Int. J. Mod. Phys. A10 (1995) 1219.
    • (1993) Mod. Phys. Lett. A , vol.8 , pp. 1047
    • Kharchev, S.1    Marshakov, A.2    Mironov, A.3
  • 49
    • 0000015551 scopus 로고
    • [25] S. Kharchev, A. Marshakov, A. Mironov et al., Landau-Ginzburg Topological Theories in the Framework of GKM (Generalized Kontsevich Model) and Equivalent Hierarchies, Mod. Phys. Lett. A 8 (1993) 1047, hep-th/9208046; S. Kharchev and A. Marshakov, Int. J. Mod. Phys. A10 (1995) 1219.
    • (1995) Int. J. Mod. Phys. , vol.A10 , pp. 1219
    • Kharchev, S.1    Marshakov, A.2
  • 50
    • 0001252135 scopus 로고    scopus 로고
    • On the relation between the Holomorphic prepotentials and the Quantum Moduli in SUSY gauge theories
    • hep-th/9510129
    • [26] J. Sonnenschein, S. Theisen and S. Yankielowicz, On the Relation between the Holomorphic Prepotentials and the Quantum Moduli in SUSY Gauge Theories, Phys. Lett. B 367 (1996) 145-150, hep-th/9510129.
    • (1996) Phys. Lett. B , vol.367 , pp. 145-150
    • Sonnenschein, J.1    Theisen, S.2    Yankielowicz, S.3
  • 51
    • 0001832945 scopus 로고    scopus 로고
    • On the geometry of the moduli space of Vacua in N = 2 supersymmetric Yang-Mills theory
    • hep-th/9408036
    • [27] A Ceresole, R. D'Auria and S. Ferrara, On the Geometry of the Moduli Space of Vacua in N = 2 Supersymmetric Yang-Mills Theory, Phys. Lett. B 339 (1994) 71, hep-th/9408036; A. Klemm, W. Lerche and S. Theisen, Nonperturbative Effective Actions of N = 2 Supersymmetric Gauge Theories, hep-th/9505150; M. Matone, Instantons and Recursion Relation in N = 2 Gauge Theory, Phys. Lett. B 357 (1995) 342, hep-th/9506102; Koebe 1/4-Theorem and Inequalities in N = 2 Super-QCD, Phys. Rev. D53 (1996) 7354-7358, hep-th/9506181; K. Itoh and S.K. Yang, Prepotentials in N = 2 SU(2) Supersymmetric Yang Mills Theory with Massless Hypermultiplets, Phys. Lett. B 366 (1996) 165-173, hep-th/9507144
    • (1994) Phys. Lett. B , vol.339 , pp. 71
    • Ceresole, A.1    D'Auria, R.2    Ferrara, S.3
  • 52
    • 0001832945 scopus 로고    scopus 로고
    • hep-th/9505150
    • [27] A Ceresole, R. D'Auria and S. Ferrara, On the Geometry of the Moduli Space of Vacua in N = 2 Supersymmetric Yang-Mills Theory, Phys. Lett. B 339 (1994) 71, hep-th/9408036; A. Klemm, W. Lerche and S. Theisen, Nonperturbative Effective Actions of N = 2 Supersymmetric Gauge Theories, hep-th/9505150; M. Matone, Instantons and Recursion Relation in N = 2 Gauge Theory, Phys. Lett. B 357 (1995) 342, hep-th/9506102; Koebe 1/4-Theorem and Inequalities in N = 2 Super-QCD, Phys. Rev. D53 (1996) 7354-7358, hep-th/9506181; K. Itoh and S.K. Yang, Prepotentials in N = 2 SU(2) Supersymmetric Yang Mills Theory with Massless Hypermultiplets, Phys. Lett. B 366 (1996) 165-173, hep-th/9507144
    • Nonperturbative Effective Actions of N = 2 Supersymmetric Gauge Theories
    • Klemm, A.1    Lerche, W.2    Theisen, S.3
  • 53
    • 0000904987 scopus 로고
    • Instantons and recursion relation in N = 2 gauge theory
    • hep-th/9506102
    • [27] A Ceresole, R. D'Auria and S. Ferrara, On the Geometry of the Moduli Space of Vacua in N = 2 Supersymmetric Yang-Mills Theory, Phys. Lett. B 339 (1994) 71, hep-th/9408036; A. Klemm, W. Lerche and S. Theisen, Nonperturbative Effective Actions of N = 2 Supersymmetric Gauge Theories, hep-th/9505150; M. Matone, Instantons and Recursion Relation in N = 2 Gauge Theory, Phys. Lett. B 357 (1995) 342, hep-th/9506102; Koebe 1/4-Theorem and Inequalities in N = 2 Super-QCD, Phys. Rev. D53 (1996) 7354-7358, hep-th/9506181; K. Itoh and S.K. Yang, Prepotentials in N = 2 SU(2) Supersymmetric Yang Mills Theory with Massless Hypermultiplets, Phys. Lett. B 366 (1996) 165-173, hep-th/9507144
    • (1995) Phys. Lett. B , vol.357 , pp. 342
    • Matone, M.1
  • 54
    • 0000256566 scopus 로고    scopus 로고
    • Koebe 1/4-theorem and inequalities in N = 2 super-QCD
    • hep-th/9506181
    • [27] A Ceresole, R. D'Auria and S. Ferrara, On the Geometry of the Moduli Space of Vacua in N = 2 Supersymmetric Yang-Mills Theory, Phys. Lett. B 339 (1994) 71, hep-th/9408036; A. Klemm, W. Lerche and S. Theisen, Nonperturbative Effective Actions of N = 2 Supersymmetric Gauge Theories, hep-th/9505150; M. Matone, Instantons and Recursion Relation in N = 2 Gauge Theory, Phys. Lett. B 357 (1995) 342, hep-th/9506102; Koebe 1/4-Theorem and Inequalities in N = 2 Super-QCD, Phys. Rev. D53 (1996) 7354-7358, hep-th/9506181; K. Itoh and S.K. Yang, Prepotentials in N = 2 SU(2) Supersymmetric Yang Mills Theory with Massless Hypermultiplets, Phys. Lett. B 366 (1996) 165-173, hep-th/9507144
    • (1996) Phys. Rev. , vol.D53 , pp. 7354-7358
  • 55
    • 0010936066 scopus 로고    scopus 로고
    • Prepotentials in N = 2 SU(2) supersymmetric Yang Mills theory with Massless Hypermultiplets
    • hep-th/9507144
    • [27] A Ceresole, R. D'Auria and S. Ferrara, On the Geometry of the Moduli Space of Vacua in N = 2 Supersymmetric Yang-Mills Theory, Phys. Lett. B 339 (1994) 71, hep-th/9408036; A. Klemm, W. Lerche and S. Theisen, Nonperturbative Effective Actions of N = 2 Supersymmetric Gauge Theories, hep-th/9505150; M. Matone, Instantons and Recursion Relation in N = 2 Gauge Theory, Phys. Lett. B 357 (1995) 342, hep-th/9506102; Koebe 1/4-Theorem and Inequalities in N = 2 Super-QCD, Phys. Rev. D53 (1996) 7354-7358, hep-th/9506181; K. Itoh and S.K. Yang, Prepotentials in N = 2 SU(2) Supersymmetric Yang Mills Theory with Massless Hypermultiplets, Phys. Lett. B 366 (1996) 165-173, hep-th/9507144
    • (1996) Phys. Lett. B , vol.366 , pp. 165-173
    • Itoh, K.1    Yang, S.K.2
  • 57
    • 0008982194 scopus 로고
    • The finite Toda Lattices
    • [29] V. Inosemtsev, The Finite Toda Lattices, Comm. Math. Phys. 121 (1989) 629-638.
    • (1989) Comm. Math. Phys. , vol.121 , pp. 629-638
    • Inosemtsev, V.1
  • 58
    • 13744264593 scopus 로고
    • Massless black holes and conifolds in string theory
    • hep/th 9504090
    • [30] See, for example: A. Strominger, Massless Black Holes and Conifolds in String Theory. Nucl. Phys. B 451 (1995) 96-108, hep/th 9504090; S. Kachru, A. Klemm, W. Lerche, P. Mayr and C. Vafa, Nonperturbative Results on the Point-Particle Limit of N = 2 Heterotic String Compactification, Nucl. Phys. B 459 (1996) 537-558, hep/th 9508155; and ref. [11].
    • (1995) Nucl. Phys. B , vol.451 , pp. 96-108
    • Strominger, A.1
  • 59
    • 16144366518 scopus 로고    scopus 로고
    • Nonperturbative results on the Point-Particle limit of N = 2 Heterotic string compactification
    • hep/th 9508155; and ref. [11]
    • [30] See, for example: A. Strominger, Massless Black Holes and Conifolds in String Theory. Nucl. Phys. B 451 (1995) 96-108, hep/th 9504090; S. Kachru, A. Klemm, W. Lerche, P. Mayr and C. Vafa, Nonperturbative Results on the Point-Particle Limit of N = 2 Heterotic String Compactification, Nucl. Phys. B 459 (1996) 537-558, hep/th 9508155; and ref. [11].
    • (1996) Nucl. Phys. B , vol.459 , pp. 537-558
    • Kachru, S.1    Klemm, A.2    Lerche, W.3    Mayr, P.4    Vafa, C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.