메뉴 건너뛰기




Volumn 129, Issue 1, 1996, Pages 193-237

Finite dimensionality and upper semicontinuity of the global attractor of singularly perturbed Hodgkin-Huxley systems

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0030594788     PISSN: 00220396     EISSN: None     Source Type: Journal    
DOI: 10.1006/jdeq.1996.0116     Document Type: Article
Times cited : (11)

References (49)
  • 1
    • 0025069480 scopus 로고
    • The singular perturbed Hodgkin-Huxley equations as a tool for the analysis of repetitive nerve activity
    • 1. F. AWISZUS, J. DEHNHARDT, AND T. FUNKE, The singular perturbed Hodgkin-Huxley equations as a tool for the analysis of repetitive nerve activity, J. Math. Biol. 28 (1990), 177-195.
    • (1990) J. Math. Biol. , vol.28 , pp. 177-195
    • Awiszus, F.1    Dehnhardt, J.2    Funke, T.3
  • 3
    • 0002538743 scopus 로고
    • Invariant manifolds for semilinear partial differential equations
    • 3. P. BATES AND C. JONES, Invariant manifolds for semilinear partial differential equations, Dynamics Reported 2 (1989), 1-38.
    • (1989) Dynamics Reported , vol.2 , pp. 1-38
    • Bates, P.1    Jones, C.2
  • 4
    • 0001105726 scopus 로고
    • Singular perturbations for nonlinear hyperbolic-parabolic problems
    • 4. A. BENAOUDA AND M. TORT, Singular perturbations for nonlinear hyperbolic-parabolic problems, SIAM J. Math. Anal. 18 (1987), 137-148.
    • (1987) SIAM J. Math. Anal. , vol.18 , pp. 137-148
    • Benaouda, A.1    Tort, M.2
  • 7
    • 0000805398 scopus 로고
    • Positively invariant regions for systems of nonlinear diffusion equations
    • 7. K. CHEUH, C. CONLEY, AND J. SMOLLER, Positively invariant regions for systems of nonlinear diffusion equations, Indiana Univ. Math. J. 26 (1977), 373-392.
    • (1977) Indiana Univ. Math. J. , vol.26 , pp. 373-392
    • Cheuh, K.1    Conley, C.2    Smoller, J.3
  • 9
    • 0001472248 scopus 로고
    • Nerve axon equations I: Linear approximations
    • 9. J. EVANS, Nerve axon equations I: linear approximations, Indiana Univ. Math. J. 21 (1972), 877-885.
    • (1972) Indiana Univ. Math. J. , vol.21 , pp. 877-885
    • Evans, J.1
  • 10
    • 0001472247 scopus 로고
    • Nerve axon equations II: Stability at rest
    • 10. J. EVANS, Nerve axon equations II: stability at rest, Indiana Univ. Math. J. 22 (1972), 75-90.
    • (1972) Indiana Univ. Math. J. , vol.22 , pp. 75-90
    • Evans, J.1
  • 11
    • 0001472246 scopus 로고
    • Nerve axon equations III: Stability of the nerve impulse
    • 11. J. EVANS, Nerve axon equations III: stability of the nerve impulse, Indiana Univ. Math. J. 22 (1972), 577-593.
    • (1972) Indiana Univ. Math. J. , vol.22 , pp. 577-593
    • Evans, J.1
  • 12
    • 0016578299 scopus 로고
    • Nerve axon equations IV: The stable and the unstable impulse
    • 12. J. EVANS, Nerve axon equations IV: the stable and the unstable impulse, Indiana Univ. Math. J. 24 (1975), 1160-1190.
    • (1975) Indiana Univ. Math. J. , vol.24 , pp. 1160-1190
    • Evans, J.1
  • 13
    • 0014882045 scopus 로고
    • Solutions to axon equations
    • 13. J. EVANS AND N. SHENK, Solutions to axon equations, Biophy. J. 10 (1970), 1090-1101.
    • (1970) Biophy. J. , vol.10 , pp. 1090-1101
    • Evans, J.1    Shenk, N.2
  • 15
    • 0023209275 scopus 로고
    • A hyperbolic system from a neural transmission model
    • 15. W. FITZGIBBON, A hyperbolic system from a neural transmission model, Compact Math. Applic. 13 (1987), 767-769.
    • (1987) Compact Math. Applic. , vol.13 , pp. 767-769
    • Fitzgibbon, W.1
  • 17
    • 38149144351 scopus 로고
    • Convergence of singularly perturbed Hodgkin-Huxley systems
    • 17. W. FITZGIBBON AND M. PARROTT, Convergence of singularly perturbed Hodgkin-Huxley systems, Nonlinear Anal., TMA 22 (1994), 363-379.
    • (1994) Nonlinear Anal., TMA , vol.22 , pp. 363-379
    • Fitzgibbon, W.1    Parrott, M.2
  • 18
    • 0011673477 scopus 로고
    • Global dynamics of singularly perturbed Hodgkin-Huxley equations
    • (G. Goldstein and J. Goldstein, Eds.), Kluwer Academic Publ.
    • 18. W. FITZGIBBON, M. PARROTT, AND Y. YOU, Global dynamics of singularly perturbed Hodgkin-Huxley equations, in "Semigroups of Linear and Nonlinear Operations and Applications" (G. Goldstein and J. Goldstein, Eds.), pp. 159-176, Kluwer Academic Publ., 1993.
    • (1993) Semigroups of Linear and Nonlinear Operations and Applications , pp. 159-176
    • Fitzgibbon, W.1    Parrott, M.2    You, Y.3
  • 20
    • 38249021783 scopus 로고
    • Semilinear Hille-Yosida Theory: The approximation theorem and groups of operators
    • 20. J. GOLDSTEIN, S. OHARU, AND T. TAKAHASHI, Semilinear Hille-Yosida Theory: The approximation theorem and groups of operators, Nonlinear Anal., TMA 13 (1989), 325-339.
    • (1989) Nonlinear Anal., TMA , vol.13 , pp. 325-339
    • Goldstein, J.1    Oharu, S.2    Takahashi, T.3
  • 22
    • 0003293929 scopus 로고
    • Asymptotic Behavior of Dissipative Systems
    • Providence, R.I.
    • 22. J. HALE, "Asymptotic Behavior of Dissipative Systems," Amer. Math. Soc., Providence, R.I., 1988.
    • (1988) Amer. Math. Soc.
    • Hale, J.1
  • 23
    • 0002931112 scopus 로고
    • Lower semicontinuity of the attractor for a singularly perturbed hyperbolic equation
    • 23. J. HALE AND G. RAUGEL, Lower semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Dynamics Differential Equations 2 (1990), 19-67.
    • (1990) J. Dynamics Differential Equations , vol.2 , pp. 19-67
    • Hale, J.1    Raugel, G.2
  • 24
    • 0000610074 scopus 로고
    • Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation
    • 24. J. HALE AND G. RAUGEL, Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Differential Equations 73 (1988), 197-214.
    • (1988) J. Differential Equations , vol.73 , pp. 197-214
    • Hale, J.1    Raugel, G.2
  • 26
    • 77956707015 scopus 로고
    • Currents carried by sodium and potassium through the membrane of the giant axon of Loligo
    • 26. A. HODGKIN AND A. HUXLEY, Currents carried by sodium and potassium through the membrane of the giant axon of Loligo, J. Physiol. (London) 116 (1952), 449-472.
    • (1952) J. Physiol. (London) , vol.116 , pp. 449-472
    • Hodgkin, A.1    Huxley, A.2
  • 27
    • 76949125485 scopus 로고
    • The components of membrane conductance in the giant axon of Loligo
    • 27. A. HODGKIN AND A. HUXLEY, The components of membrane conductance in the giant axon of Loligo, J. Physiol. (London) 116 (1952), 497-506.
    • (1952) J. Physiol. (London) , vol.116 , pp. 497-506
    • Hodgkin, A.1    Huxley, A.2
  • 28
    • 35649001607 scopus 로고
    • The quantitiative description of membrane current and its application to conduction and excitation in nerve
    • 28. A. HODGKIN AND A. HUXLEY, The quantitiative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (London) 117 (1952), 500-544.
    • (1952) J. Physiol. (London) , vol.117 , pp. 500-544
    • Hodgkin, A.1    Huxley, A.2
  • 29
    • 76949115555 scopus 로고
    • Measurement of current voltage relations in the membrane of the giant axon of Loligo
    • 29. A. HODGKIN, A. HUXLEY, AND B. KATZ, Measurement of current voltage relations in the membrane of the giant axon of Loligo, J. Physiol. 116 (1952), 424-448.
    • (1952) J. Physiol. , vol.116 , pp. 424-448
    • Hodgkin, A.1    Huxley, A.2    Katz, B.3
  • 30
    • 0008682501 scopus 로고
    • Accretive operators and nonlinear evolution equations
    • "Nonlinear Functional Analysis" (F. Browder, Ed.)
    • 30. T. KATO, Accretive operators and nonlinear evolution equations, in "Nonlinear Functional Analysis" (F. Browder, Ed.), Amer. Math. Soc. Transl. Ser. 2 (1970), 138-161.
    • (1970) Amer. Math. Soc. Transl. Ser. , vol.2 , pp. 138-161
    • Kato, T.1
  • 32
    • 0003123253 scopus 로고
    • On the Hodgkin-Huxley partial differential equation
    • 32. H. LIEBERSTEIN, On the Hodgkin-Huxley partial differential equation, Math. Biosci. 1 (1967), 45-69.
    • (1967) Math. Biosci. , vol.1 , pp. 45-69
    • Lieberstein, H.1
  • 33
    • 0000247056 scopus 로고
    • Finite dimensional attractors associated with partially dissipative reaction diffusion systems
    • 33. M. MARION, Finite dimensional attractors associated with partially dissipative reaction diffusion systems, SIAM J. Math. Anal. 20 (1989), 815-844.
    • (1989) SIAM J. Math. Anal. , vol.20 , pp. 815-844
    • Marion, M.1
  • 35
    • 84990574966 scopus 로고
    • An initial-boundary value problem of physiological significance for equations of nerve conduction
    • 35. M. MASCAGNI, An initial-boundary value problem of physiological significance for equations of nerve conduction, Comm. Pure and Appl. Math. XLII (1989), 213-227.
    • (1989) Comm. Pure and Appl. Math. , vol.42 , pp. 213-227
    • Mascagni, M.1
  • 37
    • 45149143498 scopus 로고
    • The singular limit of semilinear damped equations
    • 37. X. MORA AND J. SOLA-MORALES, The singular limit of semilinear damped equations, J. Differential Equations 78 (1989), 262-307.
    • (1989) J. Differential Equations , vol.78 , pp. 262-307
    • Mora, X.1    Sola-Morales, J.2
  • 38
    • 38249003319 scopus 로고
    • Time singular limit of semilinear wave equations with damping
    • 38. B. NAJMAN, Time singular limit of semilinear wave equations with damping, J. Math. Anal. Appl. 174 (1993), 95-117.
    • (1993) J. Math. Anal. Appl. , vol.174 , pp. 95-117
    • Najman, B.1
  • 40
    • 0002307123 scopus 로고
    • Qualitative theory of the FitzHigh-Nagumo equations
    • 40. J. RAUCH AND J. SMOLLER, Qualitative theory of the FitzHigh-Nagumo equations, Adv. Math. 27 (1978), 12-44.
    • (1978) Adv. Math. , vol.27 , pp. 12-44
    • Rauch, J.1    Smoller, J.2
  • 41
    • 0001418965 scopus 로고
    • Non-linear semigroups
    • 41. L. SEGAL, Non-linear semigroups, Ann. of Math. 78 (1963), 339-364.
    • (1963) Ann. of Math. , vol.78 , pp. 339-364
    • Segal, L.1
  • 43
    • 84981759069 scopus 로고
    • Singular perturbations of Cauchy's problem
    • 43. J. SMOLLER, Singular perturbations of Cauchy's problem, Comm. Pure Appl. Math. XVIII (1965), 665-677.
    • (1965) Comm. Pure Appl. Math. , vol.18 , pp. 665-677
    • Smoller, J.1
  • 45
    • 0011555455 scopus 로고
    • Invariant regions and asymptotic bounds for a hyperbolic version of the nerve equation
    • 45. M. VALENCIA, Invariant regions and asymptotic bounds for a hyperbolic version of the nerve equation, Nonlinear Anal. TMA 16 (1991), 1035-1052.
    • (1991) Nonlinear Anal. TMA , vol.16 , pp. 1035-1052
    • Valencia, M.1
  • 47
    • 0003057670 scopus 로고
    • Regular degeneration and boundary layer for linear differential equations with small parameters
    • 47. M. VISHIK AND L. LYUSTERNIK, Regular degeneration and boundary layer for linear differential equations with small parameters, Uspekhi Mat. Nauk. 12, No. (5) (77), (1957), AMS Translations, Ser. 2, 20 (1962), 239-264.
    • (1957) Uspekhi Mat. Nauk. , vol.12 , Issue.5-77
    • Vishik, M.1    Lyusternik, L.2
  • 48
    • 0011554727 scopus 로고
    • 47. M. VISHIK AND L. LYUSTERNIK, Regular degeneration and boundary layer for linear differential equations with small parameters, Uspekhi Mat. Nauk. 12, No. (5) (77), (1957), AMS Translations, Ser. 2, 20 (1962), 239-264.
    • (1962) AMS Translations, Ser. 2 , vol.20 , pp. 239-264
  • 49
    • 0000479863 scopus 로고
    • A bifurcation problem for a nonlinear hyperbolic partial differential equation
    • 48. G. WEBB, A bifurcation problem for a nonlinear hyperbolic partial differential equation, SIAM J. Math. Anal. 10 (1979), 922-932.
    • (1979) SIAM J. Math. Anal. , vol.10 , pp. 922-932
    • Webb, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.