-
1
-
-
0025069480
-
The singular perturbed Hodgkin-Huxley equations as a tool for the analysis of repetitive nerve activity
-
1. F. AWISZUS, J. DEHNHARDT, AND T. FUNKE, The singular perturbed Hodgkin-Huxley equations as a tool for the analysis of repetitive nerve activity, J. Math. Biol. 28 (1990), 177-195.
-
(1990)
J. Math. Biol.
, vol.28
, pp. 177-195
-
-
Awiszus, F.1
Dehnhardt, J.2
Funke, T.3
-
3
-
-
0002538743
-
Invariant manifolds for semilinear partial differential equations
-
3. P. BATES AND C. JONES, Invariant manifolds for semilinear partial differential equations, Dynamics Reported 2 (1989), 1-38.
-
(1989)
Dynamics Reported
, vol.2
, pp. 1-38
-
-
Bates, P.1
Jones, C.2
-
4
-
-
0001105726
-
Singular perturbations for nonlinear hyperbolic-parabolic problems
-
4. A. BENAOUDA AND M. TORT, Singular perturbations for nonlinear hyperbolic-parabolic problems, SIAM J. Math. Anal. 18 (1987), 137-148.
-
(1987)
SIAM J. Math. Anal.
, vol.18
, pp. 137-148
-
-
Benaouda, A.1
Tort, M.2
-
7
-
-
0000805398
-
Positively invariant regions for systems of nonlinear diffusion equations
-
7. K. CHEUH, C. CONLEY, AND J. SMOLLER, Positively invariant regions for systems of nonlinear diffusion equations, Indiana Univ. Math. J. 26 (1977), 373-392.
-
(1977)
Indiana Univ. Math. J.
, vol.26
, pp. 373-392
-
-
Cheuh, K.1
Conley, C.2
Smoller, J.3
-
9
-
-
0001472248
-
Nerve axon equations I: Linear approximations
-
9. J. EVANS, Nerve axon equations I: linear approximations, Indiana Univ. Math. J. 21 (1972), 877-885.
-
(1972)
Indiana Univ. Math. J.
, vol.21
, pp. 877-885
-
-
Evans, J.1
-
10
-
-
0001472247
-
Nerve axon equations II: Stability at rest
-
10. J. EVANS, Nerve axon equations II: stability at rest, Indiana Univ. Math. J. 22 (1972), 75-90.
-
(1972)
Indiana Univ. Math. J.
, vol.22
, pp. 75-90
-
-
Evans, J.1
-
11
-
-
0001472246
-
Nerve axon equations III: Stability of the nerve impulse
-
11. J. EVANS, Nerve axon equations III: stability of the nerve impulse, Indiana Univ. Math. J. 22 (1972), 577-593.
-
(1972)
Indiana Univ. Math. J.
, vol.22
, pp. 577-593
-
-
Evans, J.1
-
12
-
-
0016578299
-
Nerve axon equations IV: The stable and the unstable impulse
-
12. J. EVANS, Nerve axon equations IV: the stable and the unstable impulse, Indiana Univ. Math. J. 24 (1975), 1160-1190.
-
(1975)
Indiana Univ. Math. J.
, vol.24
, pp. 1160-1190
-
-
Evans, J.1
-
13
-
-
0014882045
-
Solutions to axon equations
-
13. J. EVANS AND N. SHENK, Solutions to axon equations, Biophy. J. 10 (1970), 1090-1101.
-
(1970)
Biophy. J.
, vol.10
, pp. 1090-1101
-
-
Evans, J.1
Shenk, N.2
-
15
-
-
0023209275
-
A hyperbolic system from a neural transmission model
-
15. W. FITZGIBBON, A hyperbolic system from a neural transmission model, Compact Math. Applic. 13 (1987), 767-769.
-
(1987)
Compact Math. Applic.
, vol.13
, pp. 767-769
-
-
Fitzgibbon, W.1
-
16
-
-
85029970095
-
Hodgkin-Huxley models of neutral conduction
-
LSU Department of Mathematics
-
16. W. FITZGIBBON, C. MARTIN, AND M. PARROTT, "Hodgkin-Huxley models of neutral conduction," Seminar Notes in Functional Analysis and PDE's, LSU Department of Mathematics, 1991-1992, 96-107.
-
(1991)
Seminar Notes in Functional Analysis and PDE's
, pp. 96-107
-
-
Fitzgibbon, W.1
Martin, C.2
Parrott, M.3
-
17
-
-
38149144351
-
Convergence of singularly perturbed Hodgkin-Huxley systems
-
17. W. FITZGIBBON AND M. PARROTT, Convergence of singularly perturbed Hodgkin-Huxley systems, Nonlinear Anal., TMA 22 (1994), 363-379.
-
(1994)
Nonlinear Anal., TMA
, vol.22
, pp. 363-379
-
-
Fitzgibbon, W.1
Parrott, M.2
-
18
-
-
0011673477
-
Global dynamics of singularly perturbed Hodgkin-Huxley equations
-
(G. Goldstein and J. Goldstein, Eds.), Kluwer Academic Publ.
-
18. W. FITZGIBBON, M. PARROTT, AND Y. YOU, Global dynamics of singularly perturbed Hodgkin-Huxley equations, in "Semigroups of Linear and Nonlinear Operations and Applications" (G. Goldstein and J. Goldstein, Eds.), pp. 159-176, Kluwer Academic Publ., 1993.
-
(1993)
Semigroups of Linear and Nonlinear Operations and Applications
, pp. 159-176
-
-
Fitzgibbon, W.1
Parrott, M.2
You, Y.3
-
20
-
-
38249021783
-
Semilinear Hille-Yosida Theory: The approximation theorem and groups of operators
-
20. J. GOLDSTEIN, S. OHARU, AND T. TAKAHASHI, Semilinear Hille-Yosida Theory: The approximation theorem and groups of operators, Nonlinear Anal., TMA 13 (1989), 325-339.
-
(1989)
Nonlinear Anal., TMA
, vol.13
, pp. 325-339
-
-
Goldstein, J.1
Oharu, S.2
Takahashi, T.3
-
22
-
-
0003293929
-
Asymptotic Behavior of Dissipative Systems
-
Providence, R.I.
-
22. J. HALE, "Asymptotic Behavior of Dissipative Systems," Amer. Math. Soc., Providence, R.I., 1988.
-
(1988)
Amer. Math. Soc.
-
-
Hale, J.1
-
23
-
-
0002931112
-
Lower semicontinuity of the attractor for a singularly perturbed hyperbolic equation
-
23. J. HALE AND G. RAUGEL, Lower semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Dynamics Differential Equations 2 (1990), 19-67.
-
(1990)
J. Dynamics Differential Equations
, vol.2
, pp. 19-67
-
-
Hale, J.1
Raugel, G.2
-
24
-
-
0000610074
-
Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation
-
24. J. HALE AND G. RAUGEL, Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Differential Equations 73 (1988), 197-214.
-
(1988)
J. Differential Equations
, vol.73
, pp. 197-214
-
-
Hale, J.1
Raugel, G.2
-
26
-
-
77956707015
-
Currents carried by sodium and potassium through the membrane of the giant axon of Loligo
-
26. A. HODGKIN AND A. HUXLEY, Currents carried by sodium and potassium through the membrane of the giant axon of Loligo, J. Physiol. (London) 116 (1952), 449-472.
-
(1952)
J. Physiol. (London)
, vol.116
, pp. 449-472
-
-
Hodgkin, A.1
Huxley, A.2
-
27
-
-
76949125485
-
The components of membrane conductance in the giant axon of Loligo
-
27. A. HODGKIN AND A. HUXLEY, The components of membrane conductance in the giant axon of Loligo, J. Physiol. (London) 116 (1952), 497-506.
-
(1952)
J. Physiol. (London)
, vol.116
, pp. 497-506
-
-
Hodgkin, A.1
Huxley, A.2
-
28
-
-
35649001607
-
The quantitiative description of membrane current and its application to conduction and excitation in nerve
-
28. A. HODGKIN AND A. HUXLEY, The quantitiative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (London) 117 (1952), 500-544.
-
(1952)
J. Physiol. (London)
, vol.117
, pp. 500-544
-
-
Hodgkin, A.1
Huxley, A.2
-
29
-
-
76949115555
-
Measurement of current voltage relations in the membrane of the giant axon of Loligo
-
29. A. HODGKIN, A. HUXLEY, AND B. KATZ, Measurement of current voltage relations in the membrane of the giant axon of Loligo, J. Physiol. 116 (1952), 424-448.
-
(1952)
J. Physiol.
, vol.116
, pp. 424-448
-
-
Hodgkin, A.1
Huxley, A.2
Katz, B.3
-
30
-
-
0008682501
-
Accretive operators and nonlinear evolution equations
-
"Nonlinear Functional Analysis" (F. Browder, Ed.)
-
30. T. KATO, Accretive operators and nonlinear evolution equations, in "Nonlinear Functional Analysis" (F. Browder, Ed.), Amer. Math. Soc. Transl. Ser. 2 (1970), 138-161.
-
(1970)
Amer. Math. Soc. Transl. Ser.
, vol.2
, pp. 138-161
-
-
Kato, T.1
-
32
-
-
0003123253
-
On the Hodgkin-Huxley partial differential equation
-
32. H. LIEBERSTEIN, On the Hodgkin-Huxley partial differential equation, Math. Biosci. 1 (1967), 45-69.
-
(1967)
Math. Biosci.
, vol.1
, pp. 45-69
-
-
Lieberstein, H.1
-
33
-
-
0000247056
-
Finite dimensional attractors associated with partially dissipative reaction diffusion systems
-
33. M. MARION, Finite dimensional attractors associated with partially dissipative reaction diffusion systems, SIAM J. Math. Anal. 20 (1989), 815-844.
-
(1989)
SIAM J. Math. Anal.
, vol.20
, pp. 815-844
-
-
Marion, M.1
-
35
-
-
84990574966
-
An initial-boundary value problem of physiological significance for equations of nerve conduction
-
35. M. MASCAGNI, An initial-boundary value problem of physiological significance for equations of nerve conduction, Comm. Pure and Appl. Math. XLII (1989), 213-227.
-
(1989)
Comm. Pure and Appl. Math.
, vol.42
, pp. 213-227
-
-
Mascagni, M.1
-
37
-
-
45149143498
-
The singular limit of semilinear damped equations
-
37. X. MORA AND J. SOLA-MORALES, The singular limit of semilinear damped equations, J. Differential Equations 78 (1989), 262-307.
-
(1989)
J. Differential Equations
, vol.78
, pp. 262-307
-
-
Mora, X.1
Sola-Morales, J.2
-
38
-
-
38249003319
-
Time singular limit of semilinear wave equations with damping
-
38. B. NAJMAN, Time singular limit of semilinear wave equations with damping, J. Math. Anal. Appl. 174 (1993), 95-117.
-
(1993)
J. Math. Anal. Appl.
, vol.174
, pp. 95-117
-
-
Najman, B.1
-
40
-
-
0002307123
-
Qualitative theory of the FitzHigh-Nagumo equations
-
40. J. RAUCH AND J. SMOLLER, Qualitative theory of the FitzHigh-Nagumo equations, Adv. Math. 27 (1978), 12-44.
-
(1978)
Adv. Math.
, vol.27
, pp. 12-44
-
-
Rauch, J.1
Smoller, J.2
-
41
-
-
0001418965
-
Non-linear semigroups
-
41. L. SEGAL, Non-linear semigroups, Ann. of Math. 78 (1963), 339-364.
-
(1963)
Ann. of Math.
, vol.78
, pp. 339-364
-
-
Segal, L.1
-
43
-
-
84981759069
-
Singular perturbations of Cauchy's problem
-
43. J. SMOLLER, Singular perturbations of Cauchy's problem, Comm. Pure Appl. Math. XVIII (1965), 665-677.
-
(1965)
Comm. Pure Appl. Math.
, vol.18
, pp. 665-677
-
-
Smoller, J.1
-
45
-
-
0011555455
-
Invariant regions and asymptotic bounds for a hyperbolic version of the nerve equation
-
45. M. VALENCIA, Invariant regions and asymptotic bounds for a hyperbolic version of the nerve equation, Nonlinear Anal. TMA 16 (1991), 1035-1052.
-
(1991)
Nonlinear Anal. TMA
, vol.16
, pp. 1035-1052
-
-
Valencia, M.1
-
47
-
-
0003057670
-
Regular degeneration and boundary layer for linear differential equations with small parameters
-
47. M. VISHIK AND L. LYUSTERNIK, Regular degeneration and boundary layer for linear differential equations with small parameters, Uspekhi Mat. Nauk. 12, No. (5) (77), (1957), AMS Translations, Ser. 2, 20 (1962), 239-264.
-
(1957)
Uspekhi Mat. Nauk.
, vol.12
, Issue.5-77
-
-
Vishik, M.1
Lyusternik, L.2
-
48
-
-
0011554727
-
-
47. M. VISHIK AND L. LYUSTERNIK, Regular degeneration and boundary layer for linear differential equations with small parameters, Uspekhi Mat. Nauk. 12, No. (5) (77), (1957), AMS Translations, Ser. 2, 20 (1962), 239-264.
-
(1962)
AMS Translations, Ser. 2
, vol.20
, pp. 239-264
-
-
-
49
-
-
0000479863
-
A bifurcation problem for a nonlinear hyperbolic partial differential equation
-
48. G. WEBB, A bifurcation problem for a nonlinear hyperbolic partial differential equation, SIAM J. Math. Anal. 10 (1979), 922-932.
-
(1979)
SIAM J. Math. Anal.
, vol.10
, pp. 922-932
-
-
Webb, G.1
|