메뉴 건너뛰기




Volumn 204, Issue 1, 1996, Pages 227-235

On the ratio of the first two eigenvalues of perturbed harmonic oscillators

(1)  Kurata, Kazuhiro a  

a NONE

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0030588763     PISSN: 0022247X     EISSN: None     Source Type: Journal    
DOI: 10.1006/jmaa.1996.0434     Document Type: Article
Times cited : (1)

References (10)
  • 1
    • 0011448796 scopus 로고
    • Lower bounds on the number of points in the lower spectrum of elliptic operators
    • W. Allegretto, Lower bounds on the number of points in the lower spectrum of elliptic operators, Can. J. Math. 31 (1979), 419-426.
    • (1979) Can. J. Math. , vol.31 , pp. 419-426
    • Allegretto, W.1
  • 2
    • 84967713029 scopus 로고
    • Proof of the Payne-Pólya-Weinberger conjecture
    • M. S. Ashbaugh and R. D. Benguria, Proof of the Payne-Pólya-Weinberger conjecture, Bull. Amer. Math. Soc. 25 (1991), 19-29.
    • (1991) Bull. Amer. Math. Soc. , vol.25 , pp. 19-29
    • Ashbaugh, M.S.1    Benguria, R.D.2
  • 3
    • 0000522197 scopus 로고
    • A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions
    • M. S. Ashbaugh and R. D. Benguria, A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions, Ann. of Math. 135 (1992), 601-628.
    • (1992) Ann. of Math. , vol.135 , pp. 601-628
    • Ashbaugh, M.S.1    Benguria, R.D.2
  • 4
    • 84936845007 scopus 로고    scopus 로고
    • On the ratio of the first two eigenvalues of Schrödinger operators with positive potentials
    • Lecture Notes in Math. Springer-Verlag, New York/Berlin
    • M. S. Ashbaugh and R. D. Benguria, On the ratio of the first two eigenvalues of Schrödinger operators with positive potentials, in "Proc., 1986 UAB/UA International Conference on Differential Equations and Mathematical Physics," Lecture Notes in Math, Vol. 1285, pp. 16-25. Springer-Verlag, New York/Berlin.
    • Proc., 1986 UAB/UA International Conference on Differential Equations and Mathematical Physics , vol.1285 , pp. 16-25
    • Ashbaugh, M.S.1    Benguria, R.D.2
  • 5
    • 0003317990 scopus 로고
    • Optimal lower bounds for eigenvalue gaps for Schrödinger operators with symmetric single-well potentials and related results
    • (P. W. Schaefer, Ed.), Pitman Research Notes, Pitman, Essex/New York
    • M. S. Ashbaugh and R. D. Benguria, Optimal lower bounds for eigenvalue gaps for Schrödinger operators with symmetric single-well potentials and related results, in "Maximum Principles and Eigenvalue Problems in Partial Differential Equations" (P. W. Schaefer, Ed.), Pitman Research Notes, Vol. 175, pp. 134-145, Pitman, Essex/New York, 1988.
    • (1988) Maximum Principles and Eigenvalue Problems in Partial Differential Equations , vol.175 , pp. 134-145
    • Ashbaugh, M.S.1    Benguria, R.D.2
  • 6
    • 0000508107 scopus 로고
    • Optimal bounds for ratios of eigenvalues of one-dimensional Schrödinger operators with Dirichlet boundary conditions and positive potentials
    • M. S. Ashbaugh and R. D. Benguria, Optimal bounds for ratios of eigenvalues of one-dimensional Schrödinger operators with Dirichlet boundary conditions and positive potentials, Comm. Math. Phys. 124 (1989), 403-415.
    • (1989) Comm. Math. Phys. , vol.124 , pp. 403-415
    • Ashbaugh, M.S.1    Benguria, R.D.2
  • 8
    • 0001286683 scopus 로고
    • General bounds for the eigenvalues of Schrödinger operators
    • (P. W. Schaefer, Ed.), Pitman Research Notes, Pitman, Essex/New York
    • E. M. Harrell II, General bounds for the eigenvalues of Schrödinger operators, in "Maximum Principles and Eigenvalue Problems in Partial Differential Equations" (P. W. Schaefer, Ed.), Pitman Research Notes, Vol. 175, pp. 146-166, Pitman, Essex/New York, 1988.
    • (1988) Maximum Principles and Eigenvalue Problems in Partial Differential Equations , vol.175 , pp. 146-166
    • Harrell E.M. II1
  • 9
    • 0001010179 scopus 로고
    • On the ratio of consecutive eigenvalues
    • L. E. Payne, G. Pólya, and H. Weinberger, On the ratio of consecutive eigenvalues, J. Math. Phys. 35 (1956), 289-298.
    • (1956) J. Math. Phys. , vol.35 , pp. 289-298
    • Payne, L.E.1    Pólya, G.2    Weinberger, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.