-
1
-
-
0011448796
-
Lower bounds on the number of points in the lower spectrum of elliptic operators
-
W. Allegretto, Lower bounds on the number of points in the lower spectrum of elliptic operators, Can. J. Math. 31 (1979), 419-426.
-
(1979)
Can. J. Math.
, vol.31
, pp. 419-426
-
-
Allegretto, W.1
-
2
-
-
84967713029
-
Proof of the Payne-Pólya-Weinberger conjecture
-
M. S. Ashbaugh and R. D. Benguria, Proof of the Payne-Pólya-Weinberger conjecture, Bull. Amer. Math. Soc. 25 (1991), 19-29.
-
(1991)
Bull. Amer. Math. Soc.
, vol.25
, pp. 19-29
-
-
Ashbaugh, M.S.1
Benguria, R.D.2
-
3
-
-
0000522197
-
A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions
-
M. S. Ashbaugh and R. D. Benguria, A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions, Ann. of Math. 135 (1992), 601-628.
-
(1992)
Ann. of Math.
, vol.135
, pp. 601-628
-
-
Ashbaugh, M.S.1
Benguria, R.D.2
-
4
-
-
84936845007
-
On the ratio of the first two eigenvalues of Schrödinger operators with positive potentials
-
Lecture Notes in Math. Springer-Verlag, New York/Berlin
-
M. S. Ashbaugh and R. D. Benguria, On the ratio of the first two eigenvalues of Schrödinger operators with positive potentials, in "Proc., 1986 UAB/UA International Conference on Differential Equations and Mathematical Physics," Lecture Notes in Math, Vol. 1285, pp. 16-25. Springer-Verlag, New York/Berlin.
-
Proc., 1986 UAB/UA International Conference on Differential Equations and Mathematical Physics
, vol.1285
, pp. 16-25
-
-
Ashbaugh, M.S.1
Benguria, R.D.2
-
5
-
-
0003317990
-
Optimal lower bounds for eigenvalue gaps for Schrödinger operators with symmetric single-well potentials and related results
-
(P. W. Schaefer, Ed.), Pitman Research Notes, Pitman, Essex/New York
-
M. S. Ashbaugh and R. D. Benguria, Optimal lower bounds for eigenvalue gaps for Schrödinger operators with symmetric single-well potentials and related results, in "Maximum Principles and Eigenvalue Problems in Partial Differential Equations" (P. W. Schaefer, Ed.), Pitman Research Notes, Vol. 175, pp. 134-145, Pitman, Essex/New York, 1988.
-
(1988)
Maximum Principles and Eigenvalue Problems in Partial Differential Equations
, vol.175
, pp. 134-145
-
-
Ashbaugh, M.S.1
Benguria, R.D.2
-
6
-
-
0000508107
-
Optimal bounds for ratios of eigenvalues of one-dimensional Schrödinger operators with Dirichlet boundary conditions and positive potentials
-
M. S. Ashbaugh and R. D. Benguria, Optimal bounds for ratios of eigenvalues of one-dimensional Schrödinger operators with Dirichlet boundary conditions and positive potentials, Comm. Math. Phys. 124 (1989), 403-415.
-
(1989)
Comm. Math. Phys.
, vol.124
, pp. 403-415
-
-
Ashbaugh, M.S.1
Benguria, R.D.2
-
8
-
-
0001286683
-
General bounds for the eigenvalues of Schrödinger operators
-
(P. W. Schaefer, Ed.), Pitman Research Notes, Pitman, Essex/New York
-
E. M. Harrell II, General bounds for the eigenvalues of Schrödinger operators, in "Maximum Principles and Eigenvalue Problems in Partial Differential Equations" (P. W. Schaefer, Ed.), Pitman Research Notes, Vol. 175, pp. 146-166, Pitman, Essex/New York, 1988.
-
(1988)
Maximum Principles and Eigenvalue Problems in Partial Differential Equations
, vol.175
, pp. 146-166
-
-
Harrell E.M. II1
-
9
-
-
0001010179
-
On the ratio of consecutive eigenvalues
-
L. E. Payne, G. Pólya, and H. Weinberger, On the ratio of consecutive eigenvalues, J. Math. Phys. 35 (1956), 289-298.
-
(1956)
J. Math. Phys.
, vol.35
, pp. 289-298
-
-
Payne, L.E.1
Pólya, G.2
Weinberger, H.3
-
10
-
-
0003937747
-
-
Academic Press, New York
-
M. Reed and B. Simon, "Methods of Modern Mathematical Physics," Vol. IV, "Analysis of Operators," Academic Press, New York, 1978.
-
(1978)
"Methods of Modern Mathematical Physics," Vol. IV, "Analysis of Operators,"
, vol.4
-
-
Reed, M.1
Simon, B.2
|