메뉴 건너뛰기




Volumn 138, Issue 2, 1996, Pages 410-425

On Banach spaces with bases

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0030585611     PISSN: 00221236     EISSN: None     Source Type: Journal    
DOI: 10.1006/jfan.1996.0070     Document Type: Article
Times cited : (11)

References (12)
  • 1
    • 0000994136 scopus 로고
    • Dichotomie du cotype pour les espaces invariants
    • 1. J. BOURGAIN AND V. MILMAN, Dichotomie du cotype pour les espaces invariants, C. R. Acad. Sci. Paris 300 (1985), 263-266.
    • (1985) C. R. Acad. Sci. Paris , vol.300 , pp. 263-266
    • Bourgain, J.1    Milman, V.2
  • 2
    • 0001941548 scopus 로고
    • Notes on approximation properties in separable Banach spaces
    • "Geometry of Banach Spaces, Proc. Conference Strobl 1989," P. F. X. Müller and W. Schachermeyer, Eds., Cambridge Univ. Press, Cambridge
    • 2. P. G. CASAZZA AND N. J. KALTON, Notes on approximation properties in separable Banach spaces, in "Geometry of Banach Spaces, Proc. Conference Strobl 1989," (P. F. X. Müller and W. Schachermeyer, Eds.), London Math. Soc. Lecture Note Series, Vol. 158, pp. 49-63, Cambridge Univ. Press, Cambridge, 1990.
    • (1990) London Math. Soc. Lecture Note Series , vol.158 , pp. 49-63
    • Casazza, P.G.1    Kalton, N.J.2
  • 7
    • 0011673281 scopus 로고
    • On Banach spaces with the commuting bounded approximation property
    • 7. W. LUSKY, On Banach spaces with the commuting bounded approximation property, Arch. Math. 58 (1992), 568-574.
    • (1992) Arch. Math. , vol.58 , pp. 568-574
    • Lusky, W.1
  • 8
    • 0000705382 scopus 로고
    • Banach spaces on which every unconditionally converging operator is weakly compact
    • 8. A. PELCZYNSKI, Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys. 10 (1962), 641-648.
    • (1962) Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys. , vol.10 , pp. 641-648
    • Pelczynski, A.1
  • 9
    • 0001050517 scopus 로고
    • Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis
    • 9. A. PELCZYNSKI, Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis, Studia Math. 40 (1971), 239-242.
    • (1971) Studia Math. , vol.40 , pp. 239-242
    • Pelczynski, A.1
  • 12
    • 0002786112 scopus 로고
    • A Banach space without a basis which has the bounded approximation property
    • 12. S. J. SZAREK, A Banach space without a basis which has the bounded approximation property, Acta Math. 159 (1987), 81-98.
    • (1987) Acta Math. , vol.159 , pp. 81-98
    • Szarek, S.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.