-
1
-
-
0000994136
-
Dichotomie du cotype pour les espaces invariants
-
1. J. BOURGAIN AND V. MILMAN, Dichotomie du cotype pour les espaces invariants, C. R. Acad. Sci. Paris 300 (1985), 263-266.
-
(1985)
C. R. Acad. Sci. Paris
, vol.300
, pp. 263-266
-
-
Bourgain, J.1
Milman, V.2
-
2
-
-
0001941548
-
Notes on approximation properties in separable Banach spaces
-
"Geometry of Banach Spaces, Proc. Conference Strobl 1989," P. F. X. Müller and W. Schachermeyer, Eds., Cambridge Univ. Press, Cambridge
-
2. P. G. CASAZZA AND N. J. KALTON, Notes on approximation properties in separable Banach spaces, in "Geometry of Banach Spaces, Proc. Conference Strobl 1989," (P. F. X. Müller and W. Schachermeyer, Eds.), London Math. Soc. Lecture Note Series, Vol. 158, pp. 49-63, Cambridge Univ. Press, Cambridge, 1990.
-
(1990)
London Math. Soc. Lecture Note Series
, vol.158
, pp. 49-63
-
-
Casazza, P.G.1
Kalton, N.J.2
-
7
-
-
0011673281
-
On Banach spaces with the commuting bounded approximation property
-
7. W. LUSKY, On Banach spaces with the commuting bounded approximation property, Arch. Math. 58 (1992), 568-574.
-
(1992)
Arch. Math.
, vol.58
, pp. 568-574
-
-
Lusky, W.1
-
8
-
-
0000705382
-
Banach spaces on which every unconditionally converging operator is weakly compact
-
8. A. PELCZYNSKI, Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys. 10 (1962), 641-648.
-
(1962)
Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys.
, vol.10
, pp. 641-648
-
-
Pelczynski, A.1
-
9
-
-
0001050517
-
Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis
-
9. A. PELCZYNSKI, Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis, Studia Math. 40 (1971), 239-242.
-
(1971)
Studia Math.
, vol.40
, pp. 239-242
-
-
Pelczynski, A.1
-
12
-
-
0002786112
-
A Banach space without a basis which has the bounded approximation property
-
12. S. J. SZAREK, A Banach space without a basis which has the bounded approximation property, Acta Math. 159 (1987), 81-98.
-
(1987)
Acta Math.
, vol.159
, pp. 81-98
-
-
Szarek, S.J.1
|