메뉴 건너뛰기




Volumn 198, Issue 3, 1996, Pages 703-728

Study of perturbed Lotka-Volterra systems via Abelian integrals

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0030584539     PISSN: 0022247X     EISSN: None     Source Type: Journal    
DOI: 10.1006/jmaa.1996.0109     Document Type: Article
Times cited : (4)

References (17)
  • 3
    • 38249022469 scopus 로고
    • Uniqueness of periodic orbits of some vector fields with codimension two singularities
    • S. Chow, C. Li, and D. Wang, Uniqueness of periodic orbits of some vector fields with codimension two singularities, J. Differential Equations 77 (1989), 231-253.
    • (1989) J. Differential Equations , vol.77 , pp. 231-253
    • Chow, S.1    Li, C.2    Wang, D.3
  • 4
    • 0000521931 scopus 로고
    • Abelian integrals for quadratic vector fields
    • B. Drachman, S. van Gils, and Z. Zhang, Abelian integrals for quadratic vector fields, J. Reine Angew. Math. 382 (1987), 165-180.
    • (1987) J. Reine Angew. Math. , vol.382 , pp. 165-180
    • Drachman, B.1    Van Gils, S.2    Zhang, Z.3
  • 5
    • 0004085058 scopus 로고
    • Williams and Wilkins, Baltimore; new ed., Dover, New York
    • G. F. Gause, "The Struggle for Existence," Williams and Wilkins, Baltimore, 1934; new ed., Dover, New York, 1971.
    • (1934) The Struggle for Existence
    • Gause, G.F.1
  • 6
    • 0018610933 scopus 로고
    • Global stability of predator-prey interactions
    • G. W. Harrison, Global stability of predator-prey interactions, J. Math. Biol. 8 (1979), 159-171.
    • (1979) J. Math. Biol. , vol.8 , pp. 159-171
    • Harrison, G.W.1
  • 7
    • 0000857278 scopus 로고
    • A remark on the period of the periodic solution in the Lotka-Volterra system
    • S. B. Hsu, A remark on the period of the periodic solution in the Lotka-Volterra system, J. Math. Anal. Appl. 95 (1983), 428-436.
    • (1983) J. Math. Anal. Appl. , vol.95 , pp. 428-436
    • Hsu, S.B.1
  • 8
    • 0001939137 scopus 로고
    • Sulla teoria di volterra della lutta per l'esistenza
    • A. N. Kolmogorov, Sulla teoria di Volterra della lutta per l'esistenza, Giorn. Inst. Ital. Attuari 7 (1936), 74-80.
    • (1936) Giorn. Inst. Ital. Attuari , vol.7 , pp. 74-80
    • Kolmogorov, A.N.1
  • 10
    • 0002861760 scopus 로고
    • Uniqueness of limit cycles in Gause-type models of predator-prey systems
    • K. Yang and H. I. Freedman, Uniqueness of limit cycles in Gause-type models of predator-prey systems, Math. Biosci. 88 (1988), 67-84.
    • (1988) Math. Biosci. , vol.88 , pp. 67-84
    • Yang, K.1    Freedman, H.I.2
  • 11
    • 0001120901 scopus 로고
    • The properties of a stochastic model for the predator-prey type of interaction between two species
    • S. A. Leslie and J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika 47 (1960), 219-231.
    • (1960) Biometrika , vol.47 , pp. 219-231
    • Leslie, S.A.1    Gower, J.C.2
  • 13
    • 85029963138 scopus 로고
    • On dynamic systems close to the Hamilton systems
    • in Russian
    • L. S. Pontryagin, On dynamic systems close to the Hamilton systems, JETP Lett. 4 (1934) (in Russian).
    • (1934) JETP Lett. , vol.4
    • Pontryagin, L.S.1
  • 14
    • 0012880133 scopus 로고
    • Bifurcation methods in polynomial systems
    • "Bifurcations and Periodic Orbits of Vector Fields," (D. Schlomiuk, Ed.), Montréal
    • C. Rousseau, Bifurcation methods in polynomial systems, in "Bifurcations and Periodic Orbits of Vector Fields," NATO ASI Series (D. Schlomiuk, Ed.), Montréal, 1993.
    • (1993) NATO ASI Series
    • Rousseau, C.1
  • 16
    • 0000301505 scopus 로고
    • The stability and the intrinsic growth rates of prey and predator populations
    • J. T. Tanner, The stability and the intrinsic growth rates of prey and predator populations, Ecology 56 (1975), 855-867.
    • (1975) Ecology , vol.56 , pp. 855-867
    • Tanner, J.T.1
  • 17
    • 0022661610 scopus 로고
    • The period in the Lotka-Volterra system is monotonic
    • J. Waldvogel, The period in the Lotka-Volterra system is monotonic, J. Math. Anal. Appl. 114 (1986), 178-184.
    • (1986) J. Math. Anal. Appl. , vol.114 , pp. 178-184
    • Waldvogel, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.