메뉴 건너뛰기




Volumn 129, Issue 2, 1996, Pages 315-333

On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0030578649     PISSN: 00220396     EISSN: None     Source Type: Journal    
DOI: 10.1006/jdeq.1996.0120     Document Type: Article
Times cited : (122)

References (28)
  • 1
    • 85029967413 scopus 로고    scopus 로고
    • The role of mean curvature in a semilinear Neumann problem involving the critical Sobolev exponent
    • to appear
    • 1. Adimurthi, G. Mancinni, and S. L. Yadava, The role of mean curvature in a semilinear Neumann problem involving the critical Sobolev exponent, Comm. Partial Differential Equations, to appear.
    • Comm. Partial Differential Equations
    • Mancinni, G.1    Yadava, S.L.2
  • 2
    • 43949176286 scopus 로고
    • Interaction between the geometry of the boundary and positive soltions of a semilinear Neumann problem with critical nonlinearity
    • 2. Adimurthi, F. Pacella, and S. L. Yadava, Interaction between the geometry of the boundary and positive soltions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal. 113 (1993), 318-350.
    • (1993) J. Funct. Anal. , vol.113 , pp. 318-350
    • Adimurthi1    Pacella, F.2    Yadava, S.L.3
  • 3
    • 84972493844 scopus 로고
    • Characterization of concentration points and L∞-estimates for solutions involving the critical Sobolev exponent
    • 3. Adimurthi, F. Pacella and S. L. Yadava, Characterization of concentration points and L∞-estimates for solutions involving the critical Sobolev exponent, Differential Integral Equations 8, No. 1 (1995), 41-68.
    • (1995) Differential Integral Equations , vol.8 , Issue.1 , pp. 41-68
    • Adimurthi1    Pacella, F.2    Yadava, S.L.3
  • 4
    • 84990623267 scopus 로고
    • On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of the topology of the domain
    • 4. A. Bahri and J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), 255-294.
    • (1988) Comm. Pure Appl. Math. , vol.41 , pp. 255-294
    • Bahri, A.1    Coron, J.M.2
  • 5
    • 0003007474 scopus 로고
    • On a variational problem with lack of compactness: The topological effect of the critical points at infinity
    • 5. A. Bahri, Y. Li, and O. Rey, On a variational problem with lack of compactness: The topological effect of the critical points at infinity, Calculus of Variations 3 (1995), 67-93.
    • (1995) Calculus of Variations , vol.3 , pp. 67-93
    • Bahri, A.1    Li, Y.2    Rey, O.3
  • 6
    • 0002556198 scopus 로고
    • The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems
    • 6. V. Benci and G. Cerami, The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rational Mech. Anal. 114 (1991), 79-93.
    • (1991) Arch. Rational Mech. Anal. , vol.114 , pp. 79-93
    • Benci, V.1    Cerami, G.2
  • 7
    • 0003160707 scopus 로고
    • Multiple positive solutions of some elliptic problems via the morse theory and the domain topology
    • 7. V. Benci and G. Cerami, Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology, Calculus of Variations 2 (1994), 29-48.
    • (1994) Calculus of Variations , vol.2 , pp. 29-48
    • Benci, V.1    Cerami, G.2
  • 8
    • 0002678271 scopus 로고
    • On the number of the positive solutions of some nonlinear elliptic problems
    • Quaderno Scuola Normale Superiore, Pisa
    • 8. V. Benci, G. Cerami, and D. Passaseo, On the number of the positive solutions of some nonlinear elliptic problems, in "Nonlinear Analysis, A Tribute in Honour of G. Prodi," pp. 93-109, Quaderno Scuola Normale Superiore, Pisa, 1991.
    • (1991) Nonlinear Analysis, A Tribute in Honour of G. Prodi , pp. 93-109
    • Benci, V.1    Cerami, G.2    Passaseo, D.3
  • 9
    • 0001617997 scopus 로고
    • The effect of the domain shape on the number of positive solutions of certain nonlinear equations
    • 9. E. N. Dancer, The effect of the domain shape on the number of positive solutions of certain nonlinear equations, J. Differential Equations 74 (1988), 120-156.
    • (1988) J. Differential Equations , vol.74 , pp. 120-156
    • Dancer, E.N.1
  • 10
    • 38249017009 scopus 로고
    • The effect of the domain shape on the number of positive solutions of certain nonlinear equations, II
    • 10. E. N. Dancer, The effect of the domain shape on the number of positive solutions of certain nonlinear equations, II, J. Differential Equations 87 (1990), 316-339.
    • (1990) J. Differential Equations , vol.87 , pp. 316-339
    • Dancer, E.N.1
  • 11
    • 85029968058 scopus 로고    scopus 로고
    • On the uniqueness of the positive solutions of singularly perturbed problem
    • to appear
    • 11. E. N. Dancer, On the uniqueness of the positive solutions of singularly perturbed problem, Rocky Mountain J. Math., to appear.
    • Rocky Mountain J. Math.
    • Dancer, E.N.1
  • 12
    • 84990614227 scopus 로고
    • Nonsymmetric ground states of symmetric variational problems
    • 12. M. J. Esteban, Nonsymmetric ground states of symmetric variational problems, Comm. Pure Appl. Math. 44, No. 2 (1991), 259-274.
    • (1991) Comm. Pure Appl. Math. , vol.44 , Issue.2 , pp. 259-274
    • Esteban, M.J.1
  • 13
    • 84903853123 scopus 로고
    • Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical sobolev exponent
    • 13. Z. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Analyse Nonlinéaire 8, No. 2 (1991), 159-174.
    • (1991) Analyse Nonlinéaire , vol.8 , Issue.2 , pp. 159-174
    • Han, Z.1
  • 14
    • 85030707196 scopus 로고
    • The concentration-compactness principle in the calculus of variations, the locally compact case, I, II
    • 14. P. L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case, I, II, Ann. Inst. Henri Poincaré Anal. Nonlinéaire 1 (1984), 109-145, 223-283.
    • (1984) Ann. Inst. Henri Poincaré Anal. Nonlinéaire , vol.1 , pp. 109-145
    • Lions, P.L.1
  • 15
    • 84973998562 scopus 로고
    • Singular behavior of least-energy solutions of a semilinear neumann problem involving critical sobolev exponents
    • 15. W.-M. Ni, X. Pan, and I. Takagi, Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents, Duke Math. J. 67 (1992), 1-20.
    • (1992) Duke Math. J. , vol.67 , pp. 1-20
    • Ni, W.-M.1    Pan, X.2    Takagi, I.3
  • 16
    • 84990581933 scopus 로고
    • On the shape of least energy solution to a semilinear neumann problem
    • 16. W.-M. Ni and I. Takagi, On the shape of least energy solution to a semilinear Neumann problem, Comm. Appl. Math. 44 (1991), 819-851.
    • (1991) Comm. Appl. Math. , vol.44 , pp. 819-851
    • Ni, W.-M.1    Takagi, I.2
  • 17
    • 84971179248 scopus 로고
    • Locating the peaks of least energy solutions to a semilinear neumann problems
    • 17. W.-M. Ni and I. Takagi, Locating the peaks of least energy solutions to a semilinear Neumann problems, Duke Math. J. 70 (1992), 247-281.
    • (1992) Duke Math. J. , vol.70 , pp. 247-281
    • Ni, W.-M.1    Takagi, I.2
  • 18
    • 84990662413 scopus 로고
    • On the location and profile of spike-layer solutions to a singularly perturbed semilinear dirichlet problems
    • 18. W.-M. Ni and J. Wei, On the location and profile of spike-layer solutions to a singularly perturbed semilinear dirichlet problems, Comm. Pure Appl. Math. 48 (1995), 731-768.
    • (1995) Comm. Pure Appl. Math. , vol.48 , pp. 731-768
    • Ni, W.-M.1    Wei, J.2
  • 19
    • 0002816612 scopus 로고
    • Condensation of least-energy solutions of a semilinear neumann problem
    • 19. X. B. Pan, Condensation of least-energy solutions of a semilinear Neumann problem, J. Partial Differential Equations 8 (1995), 1-36.
    • (1995) J. Partial Differential Equations , vol.8 , pp. 1-36
    • Pan, X.B.1
  • 20
    • 0000041007 scopus 로고
    • Condensation of least-energy solutions: The effect of boundary conditions
    • 20. X. B. Pan, Condensation of least-energy solutions: The effect of boundary conditions, Nonlinear Analysis TMA 24 (1995), 195-222.
    • (1995) Nonlinear Analysis TMA , vol.24 , pp. 195-222
    • Pan, X.B.1
  • 21
    • 0001025764 scopus 로고
    • Further study on the effect of boundary conditions
    • 21. X. B. Pan, Further study on the effect of boundary conditions, J. Differential Equations 117 (1995), 446-468.
    • (1995) J. Differential Equations , vol.117 , pp. 446-468
    • Pan, X.B.1
  • 23
    • 85029967230 scopus 로고    scopus 로고
    • Least energy solutions of semilinear neumann problems and asymptotics
    • to appear
    • 23. X. B. Pan and Xing-Wang Xu, Least energy solutions of semilinear Neumann problems and asymptotics, J. Math. Anal. Appl., to appear.
    • J. Math. Anal. Appl.
    • Pan, X.B.1    Xu, X.-W.2
  • 24
    • 0002944738 scopus 로고
    • The role of Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent
    • 24. O. Rey, The role of Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1990), 1-52.
    • (1990) J. Funct. Anal. , vol.89 , pp. 1-52
    • Rey, O.1
  • 25
    • 38249005996 scopus 로고
    • A multiplicity result for a variational problem with lack of compactness
    • 25. O. Rey, A multiplicity result for a variational problem with lack of compactness, Nonlinear Anal. TMA 13 (1989), 1241-1249.
    • (1989) Nonlinear Anal. TMA , vol.13 , pp. 1241-1249
    • Rey, O.1
  • 26
    • 84972539471 scopus 로고
    • Blow up points of solutions to elliptic equations with limiting nonlinearity
    • 26. O. Rey, Blow up points of solutions to elliptic equations with limiting nonlinearity, Differential Integral Equations (1991).
    • (1991) Differential Integral Equations (
    • Rey, O.1
  • 28
    • 21144478287 scopus 로고
    • On the existence of multiple single-peaked solutions for a semilinear neumann problem
    • 28. Z.-Q. Wang, On the existence of multiple single-peaked solutions for a semilinear Neumann problem, Arch. Rational Mech. Anal. 120 (1992), 375-399.
    • (1992) Arch. Rational Mech. Anal. , vol.120 , pp. 375-399
    • Wang, Z.-Q.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.