-
1
-
-
0029163690
-
-
1. For some recent reviews see: (a) Wong, C.-H.; Halcomb, R. L.; Ichikawa, Y.; Kajimoto, T. Angew. Chem. Int. Ed. Engl. 1995, 34, 521-546.
-
(1995)
Angew. Chem. Int. Ed. Engl.
, vol.34
, pp. 521-546
-
-
Wong, C.-H.1
Halcomb, R.L.2
Ichikawa, Y.3
Kajimoto, T.4
-
5
-
-
0027158301
-
-
(c) Hermann, G. F.; Ichikawa, Y.; Wandrey, C.; Gaeta, F. C. A.; Paulson, J. C.; Wong, C.-H. Tetrahedron Lett. 1993, 34, 3091-3094.
-
(1993)
Tetrahedron Lett.
, vol.34
, pp. 3091-3094
-
-
Hermann, G.F.1
Ichikawa, Y.2
Wandrey, C.3
Gaeta, F.C.A.4
Paulson, J.C.5
Wong, C.-H.6
-
6
-
-
33748232724
-
-
(d) Herrmann, G. F.; Kragl, U.; Wandrey, C. Angew. Chem. Int. Ed. Engl. 1993, 32, 1342-1343.
-
(1993)
Angew. Chem. Int. Ed. Engl.
, vol.32
, pp. 1342-1343
-
-
Herrmann, G.F.1
Kragl, U.2
Wandrey, C.3
-
11
-
-
0027738687
-
-
(i) Usui, T.; Murata, T.; Yabuuchi, Y.; Ogawa, K. Carbohydr. Res. 1993, 250, 57-66.
-
(1993)
Carbohydr. Res.
, vol.250
, pp. 57-66
-
-
Usui, T.1
Murata, T.2
Yabuuchi, Y.3
Ogawa, K.4
-
12
-
-
21844512439
-
-
(j) Matahira, Y.; Ohno, K.; Kawaguchi, M.; Kawagishi, H.; Usui, T. J. Carbohydr. Chem. 1995, 14, 213-225.
-
(1995)
J. Carbohydr. Chem.
, vol.14
, pp. 213-225
-
-
Matahira, Y.1
Ohno, K.2
Kawaguchi, M.3
Kawagishi, H.4
Usui, T.5
-
14
-
-
0028761239
-
-
(l) Ajisaka, K.; Fujimoto, H.; Isomura, M. Carbohydr. Res. 1994, 259, 103.
-
(1994)
Carbohydr. Res.
, vol.259
, pp. 103
-
-
Ajisaka, K.1
Fujimoto, H.2
Isomura, M.3
-
16
-
-
0001173420
-
-
(n) Gais, H.-J.; Zeissler, A.; Maidonis, P. Tetrahedron Lett. 1988, 29, 5743-5744.
-
(1988)
Tetrahedron Lett.
, vol.29
, pp. 5743-5744
-
-
Gais, H.-J.1
Zeissler, A.2
Maidonis, P.3
-
18
-
-
0021327263
-
-
(p) Ooi, Y.; Hashimoto, T.; Mitsuo, H.; Satoh, T. Tetrahedron Lett. 1984, 25, 2241-2244.
-
(1984)
Tetrahedron Lett.
, vol.25
, pp. 2241-2244
-
-
Ooi, Y.1
Hashimoto, T.2
Mitsuo, H.3
Satoh, T.4
-
19
-
-
0026470303
-
-
(q) Krén, V.; Sedmera, P.; Havlicek, V.; Fiserova, A. Tetrahedron Lett. 1992, 33, 7233-7236.
-
(1992)
Tetrahedron Lett.
, vol.33
, pp. 7233-7236
-
-
Krén, V.1
Sedmera, P.2
Havlicek, V.3
Fiserova, A.4
-
20
-
-
0026640464
-
-
(r) Attal, S.; Bay, S.; Cantacuzene, D. Tetrahedron 1992, 48, 9251-9260.
-
(1992)
Tetrahedron
, vol.48
, pp. 9251-9260
-
-
Attal, S.1
Bay, S.2
Cantacuzene, D.3
-
21
-
-
0001547441
-
-
(s) Kobayashi, S.; Kainuma, K.; Kawasaki, T.; Shoda, S. J. Am. Chem. Soc. 1991, 113, 3079-3084.
-
(1991)
J. Am. Chem. Soc.
, vol.113
, pp. 3079-3084
-
-
Kobayashi, S.1
Kainuma, K.2
Kawasaki, T.3
Shoda, S.4
-
22
-
-
0027968157
-
-
(t) Binder, W. H.; Kählig, H.; Schmid, W. Tetrahedron 1994, 50, 10407-10418.
-
(1994)
Tetrahedron
, vol.50
, pp. 10407-10418
-
-
Binder, W.H.1
Kählig, H.2
Schmid, W.3
-
23
-
-
0028215538
-
-
(u) Trincone, A.; Pagnotta, E.; Sodano, G. Tetrahedron Lett. 1994, 35, 1415-1416.
-
(1994)
Tetrahedron Lett.
, vol.35
, pp. 1415-1416
-
-
Trincone, A.1
Pagnotta, E.2
Sodano, G.3
-
24
-
-
85030271063
-
-
note
-
3. In the case of glycosyltransferases, by contrast, the substrate specificity is always perfect so that complete regio-and stereospecific glycosidation can be achieved to give the respective specific product. This extremely high specificity, however, limits the applicability of transferases to general synthetic purposes.
-
-
-
-
25
-
-
0029968534
-
-
4. Fukase, K.; Yasukochi, T.; Nakai, Y.; Kusumoto, S. Tetrahedron Lett. 1996, 37, 3343-3344.
-
(1996)
Tetrahedron Lett.
, vol.37
, pp. 3343-3344
-
-
Fukase, K.1
Yasukochi, T.2
Nakai, Y.3
Kusumoto, S.4
-
26
-
-
0025268862
-
-
5. Chemical synthesis of Gal(β1-3)Gal(β1-4)Xyl(β)-L-Ser (1) was reported previously: Ekborg, G. C.; Curenton, T.; Krishna, N. R.; Rodén, L. J. Carbohydr. Chem. 1990, 9, 15-37.
-
(1990)
J. Carbohydr. Chem.
, vol.9
, pp. 15-37
-
-
Ekborg, G.C.1
Curenton, T.2
Krishna, N.R.3
Rodén, L.4
-
27
-
-
85030272649
-
-
note
-
3CN -aqueous 0.1% AcOH; flow rate: 10 ml/min; detection: UV at 320 nm; retention time: 16.9 min). Lyophilization afforded Gal(β1-4)Xyl(β)-PNP (5) as a colorless powder: Yield 243 mg (21%).
-
-
-
-
28
-
-
85030272919
-
-
note
-
2b
-
-
-
-
29
-
-
85030280135
-
-
note
-
8. Since the 6'-O-acetyl group was partially removed or migrated in a phosphate buffer when the mixture was heated at 80°C to dissolve 7, the supersaturated reaction solution was prepared as follows. Compound 7 (125 mg, 0.263 mmol) and 8.4 eq. of 4 (662 mg, 2.20 mmol) were dissolved in water (8.25 ml) at 60°C. After the solution was cooled to room temperature, the pH of the solution was adjusted to 7.3 by addition of 0.20 M phosphate buffer (2.75 ml).
-
-
-
-
30
-
-
0025375498
-
-
9. Urban, F. J.; Moore, B. S.; Breitenbach, R. Tetrahedron Lett. 1990, 31, 4421-4424.
-
(1990)
Tetrahedron Lett.
, vol.31
, pp. 4421-4424
-
-
Urban, F.J.1
Moore, B.S.2
Breitenbach, R.3
-
32
-
-
0026520996
-
-
(b) Fukase, K.; Hase, S.; Ikenaka, T.; Kusumoto, S. Bull. Chem. Soc. Jpn. 1992, 65, 436-445.
-
(1992)
Bull. Chem. Soc. Jpn.
, vol.65
, pp. 436-445
-
-
Fukase, K.1
Hase, S.2
Ikenaka, T.3
Kusumoto, S.4
-
33
-
-
0025891187
-
-
11. (a) Takagaki, K.; Kon, A.; Tanaka, A.; Tamura, S.; Endo, M. J. Biochem. 1991, 109, 514-519.
-
(1991)
J. Biochem.
, vol.109
, pp. 514-519
-
-
Takagaki, K.1
Kon, A.2
Tanaka, A.3
Tamura, S.4
Endo, M.5
-
35
-
-
85030270207
-
-
note
-
12. In fact, NMR signals of aromatic protons of both 4 and 13 shifted upfield in a mixed aqueous solution, indicating mutual assembly through a face-to-face like interaction. Such interaction was expected to increase by reducing the ratio of DMSO in the medium. The improved selectivity and yield of glycosidation described below may be due to similar assembly in the presence of Triton X-100.
-
-
-
-
36
-
-
85030277444
-
-
note
-
13. As preliminary model experiments, three protected Gal derivatives, 4,6-O-isopropylidene-, 6-O-acetyl-, and 6-O-MOM-Gal-PNP, were tested as glycosyl acceptors. Among them, only the MOM derivative worked as an acceptor, giving a Gal(β1-3)Gal disaccharide in 13% yield. By contrast, 6-O-acetyl-Gal-PNP was not soluble in water. 4,6-O-Isopropylidene-Gal-PNP was soluble but no transglycosidation reaction proceeded at all probably owing to the steric hindrance of the isopropylidene function.
-
-
-
-
37
-
-
85030269421
-
-
note
-
14. Total 65% of 14 was recovered by combining the material regenerated from other methoxymethylated byproducts.
-
-
-
|