-
1
-
-
0000417575
-
-
1. Kimura, Y.; Nakajima, H; Hamasaki, T.; Matsumoto, T.; Matsuda, Y.; Tsuneda, A. Agric. Biol. Chem., 1990, 54, 813-814.
-
(1990)
Agric. Biol. Chem.
, vol.54
, pp. 813-814
-
-
Kimura, Y.1
Nakajima, H.2
Hamasaki, T.3
Matsumoto, T.4
Matsuda, Y.5
Tsuneda, A.6
-
2
-
-
84970570274
-
-
2. Byrne, L. T.; Guevara, B. Q.; Patalinghug, W. C.; Recio, B. V.; Ualat, C. R.; White, A. H. Aust. J. Chem., 1992, 45, 1903-1908.
-
(1992)
Aust. J. Chem.
, vol.45
, pp. 1903-1908
-
-
Byrne, L.T.1
Guevara, B.Q.2
Patalinghug, W.C.3
Recio, B.V.4
Ualat, C.R.5
White, A.H.6
-
3
-
-
85030209503
-
-
unpublished results
-
4 (LDA, THF, -78 °C) reacted with a range of aldehydes, giving mixtures of erythro and threo isomers. Yields ranged from 65% to 85%, with a marked preference for the erythro diastereomer (from 3:1 to >98: 2, increasing with the steric bulk of the aldehyde). Martin, M. J. unpublished results.
-
-
-
Martin, M.J.1
-
8
-
-
84971096013
-
-
c) Ingham, C. F.; Massy-Westropp, R. A.; Reynolds, G. D. Aust. J. Chem., 1974, 27, 1477-1489;
-
(1974)
Aust. J. Chem.
, vol.27
, pp. 1477-1489
-
-
Ingham, C.F.1
Massy-Westropp, R.A.2
Reynolds, G.D.3
-
11
-
-
0642273372
-
-
8. Similar allylic bromination has been achieved with but-2-enolides: Steyn, P. S.; Conradie, W. J.; Garbers, C. F.; de Vries, M. J. J. Org. Chem., 1965, 30, 3075-3079; Ingham, C. F.; Massy-Westropp, R. A. Aust. J. Chem., 1974, 27, 1491-1503.
-
(1965)
J. Org. Chem.
, vol.30
, pp. 3075-3079
-
-
Steyn, P.S.1
Conradie, W.J.2
Garbers, C.F.3
De Vries, M.J.4
-
12
-
-
84971101883
-
-
8. Similar allylic bromination has been achieved with but-2-enolides: Steyn, P. S.; Conradie, W. J.; Garbers, C. F.; de Vries, M. J. J. Org. Chem., 1965, 30, 3075-3079; Ingham, C. F.; Massy-Westropp, R. A. Aust. J. Chem., 1974, 27, 1491-1503.
-
(1974)
Aust. J. Chem.
, vol.27
, pp. 1491-1503
-
-
Ingham, C.F.1
Massy-Westropp, R.A.2
-
13
-
-
85030200423
-
-
note
-
1HNMR analysis). The rationale under this result may reside in the formation of an alkoxyphosphonium intermediate 15 formed through bromide displacement in 11 by the triphenyl phosphine. This species may promote the condensation with benzaldehyde leading to a benzylic alkoxonium derivative 16, which would undergo elimination (triphenyl phosphine oxide) giving rise to a benzylic carbonium ion 17 which will collapse with concomitant N-BOC deprotection to the thermodynamically more stable isomer Z-10, as the major component of the reaction mixture. (See Ref. 10). (formula presented)
-
-
-
-
14
-
-
0003592858
-
-
Benjamin-Cummings Publishing Company. Second edition. Menlo Park California
-
10. House, H. O. "Modern synthetic reactions". Benjamin-Cummings Publishing Company. Second edition. Menlo Park California 1972. pp 698.
-
(1972)
Modern Synthetic Reactions
, pp. 698
-
-
House, H.O.1
-
15
-
-
85030202090
-
-
note
-
1HNMR analysis of the crude reaction mixture.
-
-
-
|