-
1
-
-
0000227995
-
Quantum scattering theory in one dimension
-
J. H. Eberly, "Quantum scattering theory in one dimension," Am. J. Phys. 33, 771 (1965).
-
(1965)
Am. J. Phys.
, vol.33
, pp. 771
-
-
Eberly, J.H.1
-
2
-
-
0004054008
-
-
North-Holland, Amsterdam, Chap. 8
-
H. Lipkin, Quantum Mechanics (North-Holland, Amsterdam, 1973), Chap. 8.
-
(1973)
Quantum Mechanics
-
-
Lipkin, H.1
-
3
-
-
21344499302
-
Levinson's theorem, zero-energy resonances, and time delay in one-dimensional scattering systems
-
M. Sassoli de Bianchi, "Levinson's theorem, zero-energy resonances, and time delay in one-dimensional scattering systems," J. Math. Phys. 35, 2719-2733 (1994).
-
(1994)
J. Math. Phys.
, vol.35
, pp. 2719-2733
-
-
Sassoli De Bianchi, M.1
-
4
-
-
0000361935
-
The angular distribution of scattering and reaction cross sections
-
J. M. Blatt and L. C. Biedenharn, "The angular distribution of scattering and reaction cross sections," Rev. Mod. Phys. 24, 258-272 (1952); N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions (Oxford U.P., London, 1965), Chap. 2 and 10.
-
(1952)
Rev. Mod. Phys.
, vol.24
, pp. 258-272
-
-
Blatt, J.M.1
Biedenharn, L.C.2
-
5
-
-
0000361935
-
-
Oxford U.P., London, Chap. 2 and 10
-
J. M. Blatt and L. C. Biedenharn, "The angular distribution of scattering and reaction cross sections," Rev. Mod. Phys. 24, 258-272 (1952); N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions (Oxford U.P., London, 1965), Chap. 2 and 10.
-
(1965)
The Theory of Atomic Collisions
-
-
Mott, N.F.1
Massey, H.S.W.2
-
6
-
-
0008133835
-
Threshold anomalies in one-dimensional scattering
-
P. Senn, "Threshold anomalies in one-dimensional scattering," Am. J. Phys. 56, 916-921 (1988).
-
(1988)
Am. J. Phys.
, vol.56
, pp. 916-921
-
-
Senn, P.1
-
7
-
-
85033756634
-
-
note
-
0(k)=0 for any value of k.
-
-
-
-
9
-
-
36749117589
-
Inverse scattering. I. One dimension
-
R. G. Newton, "Inverse scattering. I. One dimension," J. Math. Phys. 21, 493-505 (1980); "Inverse scattering by a local impurity in a periodic potential in one dimension," J. Math. Phys. 24, 2152-2162 (1980); T. Aktosun and R. G. Newton, "Nonuniqueness in the one-dimensional inverse scattering problem," Inv. Prob. 1, 291-300 (1985).
-
(1980)
J. Math. Phys.
, vol.21
, pp. 493-505
-
-
Newton, R.G.1
-
10
-
-
36749107225
-
Inverse scattering by a local impurity in a periodic potential in one dimension
-
R. G. Newton, "Inverse scattering. I. One dimension," J. Math. Phys. 21, 493-505 (1980); "Inverse scattering by a local impurity in a periodic potential in one dimension," J. Math. Phys. 24, 2152-2162 (1980); T. Aktosun and R. G. Newton, "Nonuniqueness in the one-dimensional inverse scattering problem," Inv. Prob. 1, 291-300 (1985).
-
(1980)
J. Math. Phys.
, vol.24
, pp. 2152-2162
-
-
-
11
-
-
0039673746
-
Nonuniqueness in the one-dimensional inverse scattering problem
-
R. G. Newton, "Inverse scattering. I. One dimension," J. Math. Phys. 21, 493-505 (1980); "Inverse scattering by a local impurity in a periodic potential in one dimension," J. Math. Phys. 24, 2152-2162 (1980); T. Aktosun and R. G. Newton, "Nonuniqueness in the one-dimensional inverse scattering problem," Inv. Prob. 1, 291-300 (1985).
-
(1985)
Inv. Prob.
, vol.1
, pp. 291-300
-
-
Aktosun, T.1
Newton, R.G.2
-
12
-
-
0000472344
-
Levinson's theorem in one dimension: Heuristics
-
G. Barton, "Levinson's theorem in one dimension: heuristics," J. Phys. A: Gen. Math. 18, 479-494 (1985).
-
(1985)
J. Phys. A: Gen. Math.
, vol.18
, pp. 479-494
-
-
Barton, G.1
-
14
-
-
85033757592
-
-
note
-
3 Sassoli de Bianchi's derivation is based on the integrability of certain expressions involving phase shifts and mixing parameter, whereas ours is simply based on the observation that the Ts and Rs are all real at threshold.
-
-
-
-
15
-
-
85033751113
-
-
note
-
The s-d mixing parameter of the nucleon-nucleon scattering vanishes at threshold. This is due to the centrifugal potential in the d-wave channel.
-
-
-
-
16
-
-
0000936869
-
Phase shift analysis of one-dimensional scattering
-
Fromanek used the example of Eq. (6.1) to show that Eberly's analysis is not sufficient when the potential is nonsymmetric
-
J. Formanek, "Phase shift analysis of one-dimensional scattering," Am. J. Phys. 44, 778-779 (1976). Fromanek used the example of Eq. (6.1) to show that Eberly's analysis is not sufficient when the potential is nonsymmetric.
-
(1976)
Am. J. Phys.
, vol.44
, pp. 778-779
-
-
Formanek, J.1
-
17
-
-
33744687869
-
Comparison of approximate methods for multiple scattering in high energy collisions
-
W. Tobocman and M. Pauli, "Comparison of approximate methods for multiple scattering in high energy collisions," Phys. Rev. D 5, 2088-2101 (1972); K. K. Bajaj and Y. Nogami, "Scattering from many centers in one dimension." Can. J. Phys. 53, 874-881 (1974).
-
(1972)
Phys. Rev. D
, vol.5
, pp. 2088-2101
-
-
Tobocman, W.1
Pauli, M.2
-
18
-
-
33744687869
-
Scattering from many centers in one dimension
-
W. Tobocman and M. Pauli, "Comparison of approximate methods for multiple scattering in high energy collisions," Phys. Rev. D 5, 2088-2101 (1972); K. K. Bajaj and Y. Nogami, "Scattering from many centers in one dimension." Can. J. Phys. 53, 874-881 (1974).
-
(1974)
Can. J. Phys.
, vol.53
, pp. 874-881
-
-
Bajaj, K.K.1
Nogami, Y.2
|