-
5
-
-
0037497618
-
Sur une méthode de calcul approchée de certaines intégrales, dite méthode de col
-
L. BRILLOUIN, Sur une méthode de calcul approchée de certaines intégrales, dite méthode de col, Ann. Ecole Normale (3), 33 (1916), pp. 17-69.
-
(1916)
Ann. Ecole Normale (3)
, vol.33
, pp. 17-69
-
-
Brillouin, L.1
-
7
-
-
84972494088
-
The roots of trigonometric integrals
-
_, The roots of trigonometric integrals, Duke Math. J., 17 (1950), pp. 197-226.
-
(1950)
Duke Math. J.
, vol.17
, pp. 197-226
-
-
-
8
-
-
84960556308
-
A symptotic expansions of generalized hypergeometric functions
-
W. R. BURWELL, A symptotic expansions of generalized hypergeometric functions, Proc. London Math. Soc. (2), 22 (1924), pp. 57-72.
-
(1924)
Proc. London Math. Soc. (2)
, vol.22
, pp. 57-72
-
-
Burwell, W.R.1
-
10
-
-
0007029452
-
A method for the numerical evaluation of the oscillatory integrals associated with the cuspoid catastrophes: Application to Pearcey's integral and its derivatives
-
J. N. L. CONNOR AND P. R. CURTIS, A method for the numerical evaluation of the oscillatory integrals associated with the cuspoid catastrophes: Application to Pearcey's integral and its derivatives, J. Phys. A, 15 (1982), pp. 1179-1190.
-
(1982)
J. Phys. A
, vol.15
, pp. 1179-1190
-
-
Connor, J.N.L.1
Curtis, P.R.2
-
11
-
-
0003620605
-
-
Cambridge University Press, Cambridge
-
E. T. COPSON, A symptotic Expansions, Cambridge University Press, Cambridge, 1965.
-
(1965)
A Symptotic Expansions
-
-
Copson, E.T.1
-
13
-
-
0001666357
-
Note sur une nouvelle formule du calcul differentiel
-
C. F. FAÀ DI BRUNO, Note sur une nouvelle formule du calcul differentiel, Quart. J. Math., 1 (1855), pp. 359-360.
-
(1855)
Quart. J. Math.
, vol.1
, pp. 359-360
-
-
Faà Di Bruno, C.F.1
-
14
-
-
0002327308
-
A symptotic expansion of the Pearcey integral near the caustic
-
D. KAMINSKI, A symptotic expansion of the Pearcey integral near the caustic, SIAM J. Math. Anal., 20 (1989), pp. 987-1005.
-
(1989)
SIAM J. Math. Anal.
, vol.20
, pp. 987-1005
-
-
Kaminski, D.1
-
16
-
-
21344494075
-
A generalization of Pearcey's integral
-
R. B. PARIS, A generalization of Pearcey's integral, SIAM J. Math. Anal., 25 (1994), pp. 630-645.
-
(1994)
SIAM J. Math. Anal.
, vol.25
, pp. 630-645
-
-
Paris, R.B.1
-
17
-
-
0002341808
-
The asymptotic behavior of Pearcey's integral for complex variables
-
_, The asymptotic behavior of Pearcey's integral for complex variables, Proc. Roy. Soc. London Ser. A, 432 (1991), pp. 391-426.
-
(1991)
Proc. Roy. Soc. London Ser. A
, vol.432
, pp. 391-426
-
-
-
18
-
-
0004131337
-
A symptotics of Higher Order Differential Equations
-
Longman, London
-
R. B. PARIS AND A. D. WOOD, A symptotics of Higher Order Differential Equations, Pitman Research Notes in Mathematics Series, vol. 129, Longman, London, 1986.
-
(1986)
Pitman Research Notes in Mathematics Series
, vol.129
-
-
Paris, R.B.1
Wood, A.D.2
-
19
-
-
0002969674
-
Über trigonometrische integrale mit nur reellen nullstellen
-
G. PÓLYA, Über trigonometrische integrale mit nur reellen nullstellen, J. Reine Angew. Math., 158 (1927), pp. 6-18.
-
(1927)
J. Reine Angew. Math.
, vol.158
, pp. 6-18
-
-
Pólya, G.1
-
20
-
-
0001232688
-
On the zeros of an integral function represented by Fourier's integral
-
_, On the zeros of an integral function represented by Fourier's integral, Messenger of Math., 52 (1923), pp. 185-188.
-
(1923)
Messenger of Math.
, vol.52
, pp. 185-188
-
-
-
21
-
-
0004235026
-
-
Wolfram Research, Inc., Champaign, IL
-
MATHEMATICA, Version 2.2, Wolfram Research, Inc., Champaign, IL, 1993.
-
(1993)
MATHEMATICA, Version 2.2
-
-
-
23
-
-
85033737765
-
Dynamics and condensation of complex singularities for Burgers' equation
-
submitted
-
_, Dynamics and condensation of complex singularities for Burgers' equation, SIAM J. Math. Anal., submitted.
-
SIAM J. Math. Anal.
-
-
-
24
-
-
85033750079
-
Pole dynamics and oscillations for complex Burgers' equation in the small dispersion limit
-
submitted
-
D. SENOUF, R. CAFLISCH, AND N. ERCOLANI, Pole dynamics and oscillations for complex Burgers' equation in the small dispersion limit, Nonlinearity, submitted.
-
Nonlinearity
-
-
Senouf, D.1
Caflisch, R.2
Ercolani, N.3
|