-
1
-
-
0003029052
-
Dynamical systems III
-
Springer-Verlag, New York
-
V. I. ARNOLD, V. V. KOZLOV, AND A. I. NEIHSTADT, EDS., Dynamical Systems III, Encyclopedia of Mathematical Sciences, Springer-Verlag, New York, 1988.
-
(1988)
Encyclopedia of Mathematical Sciences
-
-
Arnold, V.I.1
Kozlov, V.V.2
Neihstadt, A.I.3
-
2
-
-
0000255540
-
Heteroclinic orbits in singular systems: A unifying approach
-
F. BATTELLI, Heteroclinic orbits in singular systems: A unifying approach, J. Dynamics Differential Equations, 6 (1994), pp. 147-173.
-
(1994)
J. Dynamics Differential Equations
, vol.6
, pp. 147-173
-
-
Battelli, F.1
-
3
-
-
0039399080
-
-
Ph.D. thesis, Division of Applied Mathematics, Brown University, Providence, RI
-
A. BOSE, Existence and stability of travelling waves in coupled nerve axon equations, Ph.D. thesis, Division of Applied Mathematics, Brown University, Providence, RI, 1994.
-
(1994)
Existence and Stability of Travelling Waves in Coupled Nerve Axon Equations
-
-
Bose, A.1
-
4
-
-
0000961428
-
Stability of the in-phase travelling wave solution in a pair of coupled nerve fibers
-
A. BOSE AND C. K. R. T. JONES, Stability of the in-phase travelling wave solution in a pair of coupled nerve fibers, Indiana Univ. Math. J., 44 (1995), pp. 189-220.
-
(1995)
Indiana Univ. Math. J.
, vol.44
, pp. 189-220
-
-
Bose, A.1
Jones, C.K.R.T.2
-
5
-
-
0010863128
-
A geometric approach to singular perturbation problems with applications to nerve impulse equations
-
G. CARPENTER, A geometric approach to singular perturbation problems with applications to nerve impulse equations, J. Differential Equations, 23 (1977), pp. 335-367.
-
(1977)
J. Differential Equations
, vol.23
, pp. 335-367
-
-
Carpenter, G.1
-
6
-
-
84972533582
-
Bifurcation of a homoclinic orbit with a saddle-center equilibrium
-
S. N. CHOW AND X. B. LIN, Bifurcation of a homoclinic orbit with a saddle-center equilibrium, Differential Integral Equations, 3 (1990), pp. 435-466.
-
(1990)
Differential Integral Equations
, vol.3
, pp. 435-466
-
-
Chow, S.N.1
Lin, X.B.2
-
7
-
-
0000958356
-
1 linearization, and homoclinic bifurcation
-
1 linearization, and homoclinic bifurcation, J. Differential Equations, 79 (1989), pp. 189-231.
-
(1989)
J. Differential Equations
, vol.79
, pp. 189-231
-
-
Deng, B.1
-
8
-
-
0000025015
-
Homoclinic bifurcation with nonhyperbolic equilibria
-
_, Homoclinic bifurcation with nonhyperbolic equilibria, SIAM J. Math. Anal., 21 (1990), pp.693-720.
-
(1990)
SIAM J. Math. Anal.
, vol.21
, pp. 693-720
-
-
-
9
-
-
0000997882
-
The existence of infinitely many traveling front and back waves in the Fitzhugh Nagumo equations
-
_, The existence of infinitely many traveling front and back waves in the Fitzhugh Nagumo equations, SIAM J. Math. Anal., 22 (1991), pp. 1631-1650.
-
(1991)
SIAM J. Math. Anal.
, vol.22
, pp. 1631-1650
-
-
-
10
-
-
0024610573
-
Symmetry-breaking bifurcations in resonant surface waves
-
Z. C. FENG AND P. R. SETHNA, Symmetry-breaking bifurcations in resonant surface waves, J. Fluid Mech., 199 (1989), pp. 495-518.
-
(1989)
J. Fluid Mech.
, vol.199
, pp. 495-518
-
-
Feng, Z.C.1
Sethna, P.R.2
-
11
-
-
0025536253
-
Global bifurcation and chaos in parametrically forced systems with one-one resonance
-
_, Global bifurcation and chaos in parametrically forced systems with one-one resonance, Dynamics Stability Systems, 5 (1990), p. 201.
-
(1990)
Dynamics Stability Systems
, vol.5
, pp. 201
-
-
-
12
-
-
0000548660
-
On the existence of chaos in a class of two-degree-of-freedom, damped, parametrically forced mechanical systems with broken O(2) symmetry
-
Z. C. FENG AND S. WIGGINS, On the existence of chaos in a class of two-degree-of-freedom, damped, parametrically forced mechanical systems with broken O(2) symmetry, Z. Angew. Math. Phys., 44 (1993), pp. 201-248.
-
(1993)
Z. Angew. Math. Phys.
, vol.44
, pp. 201-248
-
-
Feng, Z.C.1
Wiggins, S.2
-
13
-
-
34250627892
-
Geometric singular perturbation theory for ordinary differential equations
-
N. FENICHEL, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations, 31 (1979), pp. 53-98.
-
(1979)
J. Differential Equations
, vol.31
, pp. 53-98
-
-
Fenichel, N.1
-
14
-
-
0039991189
-
Travelling wave solutions of predator-prey systems with singularly-perturbed diffusion
-
R. GARDNER AND J. SMOLLER, Travelling wave solutions of predator-prey systems with singularly-perturbed diffusion, J. Differential Equations, 47 (1983), pp. 133-161.
-
(1983)
J. Differential Equations
, vol.47
, pp. 133-161
-
-
Gardner, R.1
Smoller, J.2
-
15
-
-
0000446574
-
Existence and stability of transition layers
-
J. HALE AND K. SAKAMOTO, Existence and stability of transition layers, Japan J. Appl. Math., 5 (1988), pp. 367-405.
-
(1988)
Japan J. Appl. Math.
, vol.5
, pp. 367-405
-
-
Hale, J.1
Sakamoto, K.2
-
16
-
-
0008495183
-
Orbits homoclinic to resonances: The Hamiltonian case
-
G. HALLER AND S. WIGGINS, Orbits homoclinic to resonances: The Hamiltonian case, Phys. D, 66 (1993), pp. 298-346.
-
(1993)
Phys. D
, vol.66
, pp. 298-346
-
-
Haller, G.1
Wiggins, S.2
-
17
-
-
0039399074
-
On the travelling waves of the Hodgkin-Huxley equations
-
S. HASTINGS, On the travelling waves of the Hodgkin-Huxley equations, Arch. Rational Mech. Anal., 60 (1976), pp. 229-257.
-
(1976)
Arch. Rational Mech. Anal.
, vol.60
, pp. 229-257
-
-
Hastings, S.1
-
18
-
-
0001441740
-
Invariant manifolds
-
Springer-Verlag, New York
-
M. W. HIRSCH, C. C. PUGH, AND M. SHUB, Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, New York, 1983.
-
(1983)
Lecture Notes in Mathematics
, vol.583
-
-
Hirsch, M.W.1
Pugh, C.C.2
Shub, M.3
-
19
-
-
84967743294
-
Stability of the travelling wave solutions of the Fitzhugh-Nagumo system
-
C. K. R. T. JONES, Stability of the travelling wave solutions of the Fitzhugh-Nagumo system, Trans. Amer. Math. Soc., 286 (1984), pp. 431-469.
-
(1984)
Trans. Amer. Math. Soc.
, vol.286
, pp. 431-469
-
-
Jones, C.K.R.T.1
-
20
-
-
0000263519
-
Construction of the Fitzhugh-Nagumo pulse using differential forms
-
Patterns and Dynamics in Reactive Media, H. Swinney, G. Aris, and D. Aronson, eds., Springer-Verlag, New York
-
C. K. R. T. JONES, N. KOPELL, AND R. LANGER, Construction of the Fitzhugh-Nagumo pulse using differential forms, in Patterns and Dynamics in Reactive Media, H. Swinney, G. Aris, and D. Aronson, eds., IMA Volumes in Mathematics and its Applications, Vol. 37, Springer-Verlag, New York, 1991, pp. 101-116.
-
(1991)
IMA Volumes in Mathematics and Its Applications
, vol.37
, pp. 101-116
-
-
Jones, C.K.R.T.1
Kopell, N.2
Langer, R.3
-
21
-
-
0002809936
-
Tracking invariant manifolds with differential forms
-
C. K. R. T. JONES AND N. KOPELL, Tracking invariant manifolds with differential forms, J. Differential Equations, 108 (1994), pp. 64-88.
-
(1994)
J. Differential Equations
, vol.108
, pp. 64-88
-
-
Jones, C.K.R.T.1
Kopell, N.2
-
22
-
-
0040584297
-
On the structure of separatrix-swept regions in singularly-perturbed Hamiltonian systems
-
T. J. KAPER AND S. WIGGINS, On the structure of separatrix-swept regions in singularly-perturbed Hamiltonian systems, Differential Integral Equations, 5 (1992), pp. 1363-1381.
-
(1992)
Differential Integral Equations
, vol.5
, pp. 1363-1381
-
-
Kaper, T.J.1
Wiggins, S.2
-
23
-
-
85033760882
-
Multi-bump orbits homoclinic to resonance bands
-
to appear
-
T. J. KAPER AND G. KOVAČIČ, Multi-bump orbits homoclinic to resonance bands, Trans. Amer. Math. Soc, to appear.
-
Trans. Amer. Math. Soc
-
-
Kaper, T.J.1
Kovačič, G.2
-
24
-
-
38249011144
-
Hamiltonian dynamics of orbits homoclinic to a resonance band
-
G. KOVAČIČ, Hamiltonian dynamics of orbits homoclinic to a resonance band, Phys. Lett. A, 167 (1992), pp. 137-142.
-
(1992)
Phys. Lett. A
, vol.167
, pp. 137-142
-
-
Kovačič, G.1
-
25
-
-
38249012710
-
Dissipative dynamics of orbits homoclinic to a resonance band
-
_, Dissipative dynamics of orbits homoclinic to a resonance band, Phys. Lett. A, 167 (1992), pp. 143-150.
-
(1992)
Phys. Lett. A
, vol.167
, pp. 143-150
-
-
-
26
-
-
0039533869
-
Singular perturbation theory for homoclinic orbits in a class of near-integrable Hamiltonian systems
-
_, Singular perturbation theory for homoclinic orbits in a class of near-integrable Hamiltonian systems, J. Dynamics Differential Equations, 5 (1993), pp. 559-597.
-
(1993)
J. Dynamics Differential Equations
, vol.5
, pp. 559-597
-
-
-
27
-
-
0002307231
-
Orbits homoclinic to resonances with an application to chaos in a model of the forced and damped Sine-Gordon equation
-
G. KOVAČIČ AND S. WIGGINS, Orbits homoclinic to resonances with an application to chaos in a model of the forced and damped Sine-Gordon equation, Phys. D, 57 (1992), pp. 185-225.
-
(1992)
Phys. D
, vol.57
, pp. 185-225
-
-
Kovačič, G.1
Wiggins, S.2
-
28
-
-
0002861754
-
Shadowing lemma and singularly-perturbed boundary value problems
-
X. B. LIN, Shadowing lemma and singularly-perturbed boundary value problems, SIAM J. Appl. Math., 49 (1989), pp. 26-54.
-
(1989)
SIAM J. Appl. Math.
, vol.49
, pp. 26-54
-
-
Lin, X.B.1
-
29
-
-
0012044210
-
Singular perturbations of autonomous ordinary differential equations and heteroclinic bifurcations
-
John Wiley, New York
-
H. OKA, Singular perturbations of autonomous ordinary differential equations and heteroclinic bifurcations, in Dynamical Systems, Longman Scientific and Technical, John Wiley, New York, 1990, pp. 159-194.
-
(1990)
Dynamical Systems, Longman Scientific and Technical
, pp. 159-194
-
-
Oka, H.1
-
30
-
-
38249038861
-
Transversal heteroclinic points and Cherry's example of a nonintegrable Hamiltonian system
-
K. PALMER, Transversal heteroclinic points and Cherry's example of a nonintegrable Hamiltonian system, J. Differential Equations, 65 (1986), pp. 321-360.
-
(1986)
J. Differential Equations
, vol.65
, pp. 321-360
-
-
Palmer, K.1
-
31
-
-
0002937879
-
Sustained resonance for a nonlinear system with slowly varying coefficients
-
C. ROBINSON, Sustained resonance for a nonlinear system with slowly varying coefficients, SIAM J. Math. Anal., 14 (1983), pp. 847-860.
-
(1983)
SIAM J. Math. Anal.
, vol.14
, pp. 847-860
-
-
Robinson, C.1
-
32
-
-
84974487746
-
Invariant manifolds in singular perturbation problems for ordinary differential equations
-
K. SAKAMOTO, Invariant manifolds in singular perturbation problems for ordinary differential equations, Proc. Roy. Soc. Edinburgh, Sect. A, 116 (1990), pp. 45-78.
-
(1990)
Proc. Roy. Soc. Edinburgh, Sect. A
, vol.116
, pp. 45-78
-
-
Sakamoto, K.1
-
33
-
-
44949272344
-
Heteroclinic and homoclinic orbits in singular perturbation problems
-
P. SZMOLYAN, Heteroclinic and homoclinic orbits in singular perturbation problems, J. Differential Equations, 92 (1991), pp. 255-281.
-
(1991)
J. Differential Equations
, vol.92
, pp. 255-281
-
-
Szmolyan, P.1
-
34
-
-
0028743559
-
Invariant manifolds and singularly perturbed boundary value problems
-
S. K. TIN, N. KOPELL, AND C. K. R. T. JONES, Invariant manifolds and singularly perturbed boundary value problems, SIAM J. Numer. Anal., 31 (1994), pp. 1558-1576.
-
(1994)
SIAM J. Numer. Anal.
, vol.31
, pp. 1558-1576
-
-
Tin, S.K.1
Kopell, N.2
Jones, C.K.R.T.3
|