메뉴 건너뛰기




Volumn 27, Issue 12, 1996, Pages 1437-1446

Some fixed point theorems for concentrative mappings between locally convex linear topological spaces

Author keywords

Concentrated mappings; Fixed point theory; Nonlinear operators

Indexed keywords

MAPPING; MATHEMATICAL OPERATORS; NONLINEAR EQUATIONS; TOPOLOGY;

EID: 0030526558     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/0362-546X(95)00130-N     Document Type: Article
Times cited : (23)

References (13)
  • 3
    • 0000773778 scopus 로고
    • Generalized concentrative mappings and their fixed points
    • DANEŠ J. Generalized concentrative mappings and their fixed points, Commentat. math. Univ. Carol. 11, 115-136 (1970).
    • (1970) Commentat. Math. Univ. Carol. , vol.11 , pp. 115-136
    • Daneš, J.1
  • 4
    • 0000579345 scopus 로고
    • A continuation method on locally convex spaces and applications to ordinary differential equations on noncompact intervals
    • FURI M. & PERA P., A continuation method on locally convex spaces and applications to ordinary differential equations on noncompact intervals, Annls Soc. pol. Math. 47, 331-346 (1987).
    • (1987) Annls Soc. Pol. Math. , vol.47 , pp. 331-346
    • Furi, M.1    Pera, P.2
  • 8
    • 0003798201 scopus 로고
    • D. Van Nostrand Company, Toronto
    • KELLEY J., General Topology. D. Van Nostrand Company, Toronto (1955).
    • (1955) General Topology
    • Kelley, J.1
  • 10
    • 0011295604 scopus 로고
    • Some fixed point theorems in metric and Banach spaces
    • DANEŠ J., Some fixed point theorems in metric and Banach spaces, Commentat. math. Univ. Carol. 12, 37-51 (1971).
    • (1971) Commentat. Math. Univ. Carol. , vol.12 , pp. 37-51
    • Daneš, J.1
  • 13
    • 0001194697 scopus 로고
    • An elementary version of the Leray-Schauder theorem
    • POTTER A., An elementary version of the Leray-Schauder theorem, J. London math. Soc. 5, 414-416 (1972).
    • (1972) J. London Math. Soc. , vol.5 , pp. 414-416
    • Potter, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.