-
1
-
-
0041776219
-
Hamilton cycles in metacirculant graphs with prime power cardinal blocks
-
B. Alspach, Hamilton cycles in metacirculant graphs with prime power cardinal blocks, Ann. Discrete Math. 41 (1989), 7-16.
-
(1989)
Ann. Discrete Math.
, vol.41
, pp. 7-16
-
-
Alspach, B.1
-
2
-
-
38249025209
-
Lifting Hamilton cycles in quotient graphs
-
B. Alspach, Lifting Hamilton cycles in quotient graphs, Discrete Math. 78 (1989), 25-36.
-
(1989)
Discrete Math.
, vol.78
, pp. 25-36
-
-
Alspach, B.1
-
3
-
-
0001047377
-
A construction for vertex-transitive graphs
-
B. Alspach and T. D. Parsons, A construction for vertex-transitive graphs, Canad. J. Math. 34 (1982), 307-318.
-
(1982)
Canad. J. Math.
, vol.34
, pp. 307-318
-
-
Alspach, B.1
Parsons, T.D.2
-
5
-
-
0037833863
-
Hamiltonian graphs
-
(eds. L. W. Beineke and R. J. Wilson), Academic Press, London
-
J. C. Bermond, Hamiltonian graphs. Selected topics in graph theory (eds. L. W. Beineke and R. J. Wilson), Academic Press, London (1978).
-
(1978)
Selected Topics in Graph Theory
-
-
Bermond, J.C.1
-
6
-
-
0041913852
-
Connected Cayley graphs of semidirect products of cyclic groups of prime power order by abelian groups are hamiltonian
-
E. Durnberger, Connected Cayley graphs of semidirect products of cyclic groups of prime power order by abelian groups are hamiltonian, Discrete Math. 46 (1983), 55-68.
-
(1983)
Discrete Math.
, vol.46
, pp. 55-68
-
-
Durnberger, E.1
-
7
-
-
0041913855
-
Every connected Cayley graph of a group with prime order commutator subgroup has a Hamilton cycle
-
E. Durnberger, Every connected Cayley graph of a group with prime order commutator subgroup has a Hamilton cycle, Ann. Discrete Math. 27 (1985), 75-80.
-
(1985)
Ann. Discrete Math.
, vol.27
, pp. 75-80
-
-
Durnberger, E.1
-
8
-
-
0012916399
-
More odd graph theory
-
C. D. Godsil, More odd graph theory, Discrete Math. 32 (1980), 205-207.
-
(1980)
Discrete Math.
, vol.32
, pp. 205-207
-
-
Godsil, C.D.1
-
9
-
-
85032069308
-
Updating the Hamiltonian problem - A survey
-
R. J. Gould, Updating the Hamiltonian problem - a survey, J. Graph Theory 15 (1991), 121-157.
-
(1991)
J. Graph Theory
, vol.15
, pp. 121-157
-
-
Gould, R.J.1
-
10
-
-
36348974146
-
On Hamilton cycles in Cayley graphs in groups with cyclic commutator subgroup
-
K. Keating and D. Witte, On Hamilton cycles in Cayley graphs in groups with cyclic commutator subgroup, Ann. Discrete Math. 27 (1985), 89-102.
-
(1985)
Ann. Discrete Math.
, vol.27
, pp. 89-102
-
-
Keating, K.1
Witte, D.2
-
11
-
-
0038707567
-
Hamiltonian circuits in Cayley graphs
-
D. Marušič, Hamiltonian circuits in Cayley graphs, Discrete Math. 46 (1983), 49-54.
-
(1983)
Discrete Math.
, vol.46
, pp. 49-54
-
-
Marušič, D.1
-
13
-
-
85119732290
-
-
Hamiltonicity of vertex-transitive pg-graphs. (eds. J. Nesetril and M. fiedler), Elsevier Science Publishers, New York
-
D. Marušič, Hamiltonicity of vertex-transitive pg-graphs. Fourth Czechoslovakian Symposium on Combinatorics, Graphs and Complexity (eds. J. Nesetril and M. fiedler), Elsevier Science Publishers, New York (1992), 209-212.
-
(1992)
Fourth Czechoslovakian Symposium on Combinatorics, Graphs and Complexity
, pp. 209-212
-
-
Marušič, D.1
-
14
-
-
38249009612
-
A class of non-Cayley vertex-transitive graphs associated with PSL(2, q)
-
D. Marušič and R. Scapellato, A class of non-Cayley vertex-transitive graphs associated with PSL(2, q), Discrete Math. 109 (1992), 161-170.
-
(1992)
Discrete Math.
, vol.109
, pp. 161-170
-
-
Marušič, D.1
Scapellato, R.2
-
15
-
-
0012916062
-
Classifying vertex-transitive graphs whose order is a product of two primes
-
D. Marušič and R. Scapellato, Classifying vertex-transitive graphs whose order is a product of two primes, Combinatorica 14(2) (1994), 187-201.
-
(1994)
Combinatorica
, vol.14
, Issue.2
, pp. 187-201
-
-
Marušič, D.1
Scapellato, R.2
-
18
-
-
0013004149
-
Non-Cayley vertex-transitive graphs of order twice the product of two odd primes
-
A. A. Miller and C. E. Praeger, Non-Cayley vertex-transitive graphs of order twice the product of two odd primes, J. Algebraic Combin. 3 (1994), 77-111.
-
(1994)
J. Algebraic Combin.
, vol.3
, pp. 77-111
-
-
Miller, A.A.1
Praeger, C.E.2
-
19
-
-
0001988677
-
Symmetric graphs of order a product of two primes
-
C. E. Praeger, R.-J. Wang, and M.-Y. Xu, Symmetric graphs of order a product of two primes, J. Combin. Theory B 58 (1993), 299-316.
-
(1993)
J. Combin. Theory B
, vol.58
, pp. 299-316
-
-
Praeger, C.E.1
Wang, R.-J.2
Xu, M.-Y.3
-
20
-
-
0002190572
-
Vertex-primitive graphs of order a product of two distinct primes
-
C. E. Praeger and M. X. Xu, Vertex-primitive graphs of order a product of two distinct primes, J. Combin. Theory B 59 (1993), 245-266.
-
(1993)
J. Combin. Theory B
, vol.59
, pp. 245-266
-
-
Praeger, C.E.1
Xu, M.X.2
-
21
-
-
85087229678
-
Cubic (m, n)-metacirculant graphs which are not Cayley graphs
-
in press
-
Ngo Dac Tan, Cubic (m, n)-metacirculant graphs which are not Cayley graphs. Discrete Math. in press.
-
Discrete Math.
-
-
Tan, N.D.1
-
24
-
-
0012965090
-
Vertex-transitive graphs that are not Cayley graphs
-
(eds. G. Hahn et al.), Kluwer Academic Publishers Dondrecht
-
M. E. Watkins, Vertex-transitive graphs that are not Cayley graphs, Cycles and rays (eds. G. Hahn et al.), Kluwer Academic Publishers Dondrecht (1990), 243-256.
-
(1990)
Cycles and Rays
, pp. 243-256
-
-
Watkins, M.E.1
-
26
-
-
0011275267
-
A survey: Hamiltonian cycles in Cayley graphs
-
D. Witte and J. A. Gallian, A survey: hamiltonian cycles in Cayley graphs. Discrete Math. 51 (1984), 293-304.
-
(1984)
Discrete Math.
, vol.51
, pp. 293-304
-
-
Witte, D.1
Gallian, J.A.2
|