메뉴 건너뛰기




Volumn 17, Issue 4, 1996, Pages 1007-1019

Preconditioning strategies for Hermitian Toeplitz systems with nondefinite generating functions

Author keywords

Conjugate gradient; Linear system; Preconditioner; Toeplitz matrix

Indexed keywords


EID: 0030520048     PISSN: 08954798     EISSN: None     Source Type: Journal    
DOI: 10.1137/S089547989427141X     Document Type: Article
Times cited : (38)

References (23)
  • 1
    • 0003090115 scopus 로고
    • Superfast solution of real positive definite Toeplitz systems
    • G. AMMAR AND W. GRAGG, Superfast solution of real positive definite Toeplitz systems, SIAM J. Matrix Anal. Appl., 9 (1988), pp. 61-76.
    • (1988) SIAM J. Matrix Anal. Appl. , vol.9 , pp. 61-76
    • Ammar, G.1    Gragg, W.2
  • 2
    • 0000696639 scopus 로고
    • On the rate of convergence of the preconditioned conjugate gradient method
    • O. AXELSSON AND G. LINDSKOG, On the rate of convergence of the preconditioned conjugate gradient method, Numer. Math., 48 (1988), pp. 499-523.
    • (1988) Numer. Math. , vol.48 , pp. 499-523
    • Axelsson, O.1    Lindskog, G.2
  • 3
    • 0002887353 scopus 로고
    • Spectral and computational properties of band symmetric Toeplitz matrices
    • D. BINI AND M. CAPOVANI, Spectral and computational properties of band symmetric Toeplitz matrices, Linear Algebra Appl., 52 (1983), pp. 99-126.
    • (1983) Linear Algebra Appl. , vol.52 , pp. 99-126
    • Bini, D.1    Capovani, M.2
  • 4
    • 0025657332 scopus 로고
    • A new preconditioner for the parallel solution of positive definite Toeplitz systems
    • Crete, Greece
    • D. BINI AND F. DI BENEDETTO, A new preconditioner for the parallel solution of positive definite Toeplitz systems, Proc. ACM Symposium on Parallel Algorithms and Architecture, Crete, Greece, 1990, pp. 220-223.
    • (1990) Proc. ACM Symposium on Parallel Algorithms and Architecture , pp. 220-223
    • Bini, D.1    Di Benedetto, F.2
  • 5
    • 0000102913 scopus 로고
    • Stability of methods for solving Toeplitz systems of equations
    • J. R. BUNCH, Stability of methods for solving Toeplitz systems of equations, SIAM J. Sci. Statist. Comput., 6 (1985), pp. 349-364.
    • (1985) SIAM J. Sci. Statist. Comput. , vol.6 , pp. 349-364
    • Bunch, J.R.1
  • 6
    • 0001403957 scopus 로고
    • Circulant preconditioners for Hermitian Toeplitz systems
    • R. H. CHAN, Circulant preconditioners for Hermitian Toeplitz systems, SIAM J. Matrix Anal. Appl., 10 (1989), pp. 542-550.
    • (1989) SIAM J. Matrix Anal. Appl. , vol.10 , pp. 542-550
    • Chan, R.H.1
  • 7
    • 0001090278 scopus 로고
    • Toeplitz preconditioners for Toeplitz systems with nonnegative generating functions
    • _, Toeplitz preconditioners for Toeplitz systems with nonnegative generating functions, IMA J. Numer. Anal., 11 (1991), pp. 333-345.
    • (1991) IMA J. Numer. Anal. , vol.11 , pp. 333-345
  • 8
    • 0001646777 scopus 로고
    • Toeplitz equations by conjugate gradients with circulant preconditioner
    • R,. H. CHAN AND G. STRANG, Toeplitz equations by conjugate gradients with circulant preconditioner, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 104-119.
    • (1989) SIAM J. Sci. Statist. Comput. , vol.10 , pp. 104-119
    • Chan, R.H.1    Strang, G.2
  • 9
    • 0000853646 scopus 로고
    • An optimal circulant preconditioner for Toeplitz systems
    • T. F. CHAN, An optimal circulant preconditioner for Toeplitz systems, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 766-771.
    • (1988) SIAM J. Sci. Statist. Comput. , vol.9 , pp. 766-771
    • Chan, T.F.1
  • 10
    • 0000708139 scopus 로고
    • A look-ahead Levinson algorithm for indefinite Toeplitz systems
    • T. F. CHAN AND P. C. HANSEN, A look-ahead Levinson algorithm for indefinite Toeplitz systems, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 491-506.
    • (1992) SIAM J. Matrix Anal. Appl. , vol.13 , pp. 491-506
    • Chan, T.F.1    Hansen, P.C.2
  • 11
    • 0000261363 scopus 로고
    • Analysis of preconditioning techniques for illconditioned, Toeplitz matrices
    • F. DI BENEDETTO, Analysis of preconditioning techniques for illconditioned, Toeplitz matrices, SIAM J. Sci. Comput., 16 (1995), pp. 682-697.
    • (1995) SIAM J. Sci. Comput. , vol.16 , pp. 682-697
    • Di Benedetto, F.1
  • 13
    • 51249172268 scopus 로고
    • Multigrid methods for Toeplitz matrices
    • G. FIORENTINO AND S. SERRA, Multigrid methods for Toeplitz matrices, Calcolo, 28 (1991), pp. 283-305.
    • (1991) Calcolo , vol.28 , pp. 283-305
    • Fiorentino, G.1    Serra, S.2
  • 14
    • 0000438265 scopus 로고    scopus 로고
    • Multigrid methods for symmetric block Toeplitz matrices with nonnegative generating functions
    • to appear
    • _, Multigrid methods for symmetric block Toeplitz matrices with nonnegative generating functions, SIAM J. Sci. Comput., 17 (1996). to appear.
    • (1996) SIAM J. Sci. Comput. , vol.17
  • 15
  • 17
    • 0001349834 scopus 로고
    • On the solution of Toeplitz systems
    • F. DE HOOG, On the solution of Toeplitz systems, Linear Algebra Appl., 88/89 (1987), pp. 123-138.
    • (1987) Linear Algebra Appl. , vol.88-89 , pp. 123-138
    • De Hoog, F.1
  • 19
    • 21144478031 scopus 로고
    • Spectral properties of preconditioned rational Toeplitz matrices: The nonsymmetric case
    • _, Spectral properties of preconditioned rational Toeplitz matrices: The nonsymmetric case, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 521-542.
    • (1993) SIAM J. Matrix Anal. Appl. , vol.14 , pp. 521-542
  • 21
    • 20744448636 scopus 로고
    • Preconditioning techniques for ill-conditioned block Toeplitz systems with nonnegative generating functions
    • S. SERRA, Preconditioning techniques for ill-conditioned block Toeplitz systems with nonnegative generating functions, BIT, 34-4 (1994), pp. 579-594.
    • (1994) BIT , vol.34 , Issue.4 , pp. 579-594
    • Serra, S.1
  • 22
    • 0011615044 scopus 로고
    • Tech. Rep. nr. 10, University of Calabria, Cosenza, Italy
    • 1 Generating Functions, Tech. Rep. nr. 10, University of Calabria, Cosenza, Italy, 1995.
    • (1995) 1 Generating Functions


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.