-
1
-
-
0040690714
-
Ergodic properties of an ideal gas with infinitely many degrees of freedom
-
K. L. Volkovyski and Ya. G. Sinai, "Ergodic properties of an ideal gas with infinitely many degrees of freedom," Funct. Anal. Appl. 5, 185-187 (1971).
-
(1971)
Funct. Anal. Appl.
, vol.5
, pp. 185-187
-
-
Volkovyski, K.L.1
Sinai, Ya.G.2
-
2
-
-
0030495240
-
Ergodic properties of infinite harmonic crystals: An analytic approach
-
S. Graffi and A. Martinez, "Ergodic properties of infinite harmonic crystals: An analytic approach," J. Math. Phys. 37, 5111-5135 (1996).
-
(1996)
J. Math. Phys.
, vol.37
, pp. 5111-5135
-
-
Graffi, S.1
Martinez, A.2
-
5
-
-
0003417636
-
Operator algebras and quantum statistical mechanics
-
Springer-Verlag, New York
-
O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Text and Monographs in Physics (Springer-Verlag, New York, 1987), Vols. I and II.
-
(1987)
Text and Monographs in Physics
, vol.1-2
-
-
Bratteli, O.1
Robinson, D.W.2
-
7
-
-
0003095621
-
Beweis des ergodensatzes und des H-theorems in der neuen mechanik
-
J. Von Neumann, "Beweis des Ergodensatzes und des H-Theorems in der Neuen Mechanik," Z. Phys. 57, 30-70 (1929).
-
(1929)
Z. Phys.
, vol.57
, pp. 30-70
-
-
Von Neumann, J.1
-
8
-
-
0000683218
-
Chaotic quantum phenomena without classical counterpart
-
G. Jona-Lasinio, C. Presilla, and F. Capasso, "Chaotic quantum phenomena without classical counterpart," Phys. Rev. Lett. 68, 2269-2273 (1992).
-
(1992)
Phys. Rev. Lett.
, vol.68
, pp. 2269-2273
-
-
Jona-Lasinio, G.1
Presilla, C.2
Capasso, F.3
-
10
-
-
84882050162
-
Semiclassical behaviour of coherent states on the circle
-
Bialowieza, Poland, edited by S. T. Ali, I. M. Mladenov, and A. Odzijewicz World Scientific, Singapore
-
S. De Bièvre and J. A. Gonzáles, "Semiclassical behaviour of coherent states on the circle," in Proceedings of the 11th Workshop on Geometric Methods in Physics, Bialowieza, Poland, edited by S. T. Ali, I. M. Mladenov, and A. Odzijewicz (World Scientific, Singapore, 1993).
-
(1993)
Proceedings of the 11th Workshop on Geometric Methods in Physics
-
-
De Bièvre, S.1
Gonzáles, J.A.2
-
11
-
-
0003564717
-
Generalized coherent states and their applications
-
Springer-Verlag, Berlin
-
A. M. Perelomov, Generalized Coherent States and Their Applications, Texts and Monographs in Physics (Springer-Verlag, Berlin, 1986).
-
(1986)
Texts and Monographs in Physics
-
-
Perelomov, A.M.1
-
12
-
-
0040097272
-
-
note
-
L.
-
-
-
-
13
-
-
0038912882
-
Ergodic properties of infinite systems
-
Lectures Notes in Physics, edited by J. Moser
-
S. Goldstein, J. L. Lebowitz, and M. Aizenman, "Ergodic properties of infinite systems," in Proceedings of the 1973 Battelle Rencontre, Lectures Notes in Physics, edited by J. Moser, 1974, Vol. 38, pp. 144-177.
-
(1974)
Proceedings of the 1973 Battelle Rencontre
, vol.38
, pp. 144-177
-
-
Goldstein, S.1
Lebowitz, J.L.2
Aizenman, M.3
-
15
-
-
0040690719
-
-
note
-
On the other hand, we stress that this paper does not involve any kind of semiclassical limit.
-
-
-
-
18
-
-
0040097267
-
-
note
-
L. The same for d v in the following.
-
-
-
-
19
-
-
0039505518
-
-
note
-
L) we will drop that subscript.
-
-
-
-
20
-
-
0040097268
-
-
note
-
B,L(1)=1.
-
-
-
-
21
-
-
0040097269
-
-
note
-
Notice that we are using 2β instead of β in the remainder.
-
-
-
-
22
-
-
0038912888
-
-
note
-
We are not granted, in principle, all the equivalent ergodicity and mixing properties recalled in that reference, since we have not proved asymptotic commutativity.
-
-
-
-
23
-
-
0040690716
-
-
note
-
Not to be confused with the inverse temperature β, a fixed parameter throughout this paper.
-
-
-
-
24
-
-
0038912887
-
-
note
-
ℱ(·) denotes the Schwartz class.
-
-
-
-
25
-
-
0040097270
-
-
note
-
|·| denotes the Lebesgue measure.
-
-
-
-
26
-
-
0038912885
-
-
note
-
L,m.
-
-
-
-
27
-
-
0038912886
-
-
note
-
L. See again Sec. 3 of the Appendix.
-
-
-
-
28
-
-
0040690718
-
-
note
-
|L2(k)(TmL) as explained in Sec. II B.
-
-
-
-
29
-
-
0040690717
-
-
note
-
m,dk))×some measure.
-
-
-
-
30
-
-
0040097271
-
-
note
-
I thank D. Dolgopyat for this simple proof.
-
-
-
|