메뉴 건너뛰기




Volumn 64, Issue 10, 1996, Pages 1246-1257

The multivariate Langevin and Fokker-Planck equations

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0030516386     PISSN: 00029505     EISSN: None     Source Type: Journal    
DOI: 10.1119/1.18387     Document Type: Article
Times cited : (68)

References (15)
  • 1
    • 0007324878 scopus 로고    scopus 로고
    • The mathematics of Brownian motion and Johnson noise
    • D. T. Gillespie, "The mathematics of Brownian motion and Johnson noise," Am. J. Phys. 64, 225-240 (1996).
    • (1996) Am. J. Phys. , vol.64 , pp. 225-240
    • Gillespie, D.T.1
  • 2
    • 85033763400 scopus 로고    scopus 로고
    • note
    • i's are statistically independent copies of some random variable X with a finite mean and variance, then clearly Y(n) + Y(m) = Y(n + m), which shows that Y(n) preserves its class under statistically independent addition. But it does follow from the central limit theorem that, for any such X, Y(n → ∞) must be normal.
  • 3
    • 85033740243 scopus 로고    scopus 로고
    • note
    • -50, and the square root of 0 is 0. The reason why the A -term in Eq. (1.1) is not rendered negligible by the usually much larger D-term is discussed in Ref. 1, Sec. II C.
  • 6
    • 36149027699 scopus 로고
    • On the theory of Brownian motion II
    • Ming Chen Wang and G. E. Uhlenbeck, "On the theory of Brownian motion II," Rev. Mod. Phys. 17, 323-342 (1945).
    • (1945) Rev. Mod. Phys. , vol.17 , pp. 323-342
    • Wang, M.C.1    Uhlenbeck, G.E.2
  • 7
    • 85033764296 scopus 로고    scopus 로고
    • note
    • As in Ref. 1, dt is to be regarded as an ordinary real variable whose domain is restricted to some arbitrarily small interval [0,∈]. Also, when possible we use upper and lower case letters to distinguish between a random variable X and its possible values x.
  • 9
    • 85033734145 scopus 로고    scopus 로고
    • See in Ref. 1 specifically Eqs. (3.3), (3.16), and (3.17)
    • See in Ref. 1 specifically Eqs. (3.3), (3.16), and (3.17).
  • 10
    • 85033755911 scopus 로고    scopus 로고
    • See Ref. 5, p. 156
    • See Ref. 5, p. 156.
  • 11
    • 0002121327 scopus 로고
    • Stochastic problems in physics and astronomy
    • see especially pp. 41 and 57
    • S. Chandrasekhar, "Stochastic problems in physics and astronomy," Rev. Mod. Phys. 15, 1-89 (1943); see especially pp. 41 and 57.
    • (1943) Rev. Mod. Phys. , vol.15 , pp. 1-89
    • Chandrasekhar, S.1
  • 12
    • 85033756479 scopus 로고    scopus 로고
    • See Ref. 5, pp. 196ff, for a detailed discussion of this point and literature references
    • See Ref. 5, pp. 196ff, for a detailed discussion of this point and literature references.
  • 13
    • 85033760186 scopus 로고    scopus 로고
    • Such a truncation of the infinite-term Kramers-Moyal equation does not occur for a jump Markov process; see, e.g., Ref. 8, Chap. 4
    • Such a truncation of the infinite-term Kramers-Moyal equation does not occur for a jump Markov process; see, e.g., Ref. 8, Chap. 4.
  • 14
    • 85033749896 scopus 로고    scopus 로고
    • See, e.g., Ref. 1. Eqs. (2.48)
    • See, e.g., Ref. 1. Eqs. (2.48).
  • 15
    • 85033766862 scopus 로고    scopus 로고
    • note
    • ij can be tricky to obtain; for an inconclusive discussion in the univariate case, see Ref. 8, Appendix E.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.