-
2
-
-
0001650497
-
Proof of the ergodic theorem
-
G. D. Birkhoff. Proof of the ergodic theorem. Proc. Nat. Acad. Sci. 17 (1931), 656-660.
-
(1931)
Proc. Nat. Acad. Sci.
, vol.17
, pp. 656-660
-
-
Birkhoff, G.D.1
-
4
-
-
0041051009
-
Estimating invariant measures and Lyapunov exponents
-
of this issue
-
B. R. Hunt. Estimating invariant measures and Lyapunov exponents. Ergod. Th. & Dynam. Sys. pp. 735-749 of this issue.
-
Ergod. Th. & Dynam. Sys.
, pp. 735-749
-
-
Hunt, B.R.1
-
5
-
-
84967728280
-
Prevalence: A translation-invariant 'almost every' on infinite-dimensional spaces
-
B. R. Hunt, T. Sauer and J. A. Yorke. Prevalence: a translation-invariant 'almost every' on infinite-dimensional spaces. Bull. Amer. Math. Soc. 27 (1992), 217-238; Prevalence: an addendum. Bull. Amer. Math. Soc. 28 (1993), 306-307.
-
(1992)
Bull. Amer. Math. Soc.
, vol.27
, pp. 217-238
-
-
Hunt, B.R.1
Sauer, T.2
Yorke, J.A.3
-
6
-
-
84967782914
-
Prevalence: An addendum
-
B. R. Hunt, T. Sauer and J. A. Yorke. Prevalence: a translation-invariant 'almost every' on infinite-dimensional spaces. Bull. Amer. Math. Soc. 27 (1992), 217-238; Prevalence: an addendum. Bull. Amer. Math. Soc. 28 (1993), 306-307.
-
(1993)
Bull. Amer. Math. Soc.
, vol.28
, pp. 306-307
-
-
-
7
-
-
0002053804
-
Absolutely continuous invariant measures for one-parameter families of one-dimensional maps
-
M. V. Jakobson. Absolutely continuous invariant measures for one-parameter families of one-dimensional maps. Comm. Math. Phys. 81 (1981), pp. 39-88.
-
(1981)
Comm. Math. Phys.
, vol.81
, pp. 39-88
-
-
Jakobson, M.V.1
-
8
-
-
0002244777
-
Open sets of diffeomorphisms having two attractors, each with an everywhere dense basin
-
I. Kan. Open sets of diffeomorphisms having two attractors, each with an everywhere dense basin. Bull. Amer. Math. Soc. 31 (1994), 68-74.
-
(1994)
Bull. Amer. Math. Soc.
, vol.31
, pp. 68-74
-
-
Kan, I.1
-
10
-
-
0025599502
-
Dynamics of real polynomials on the plane and triple point phase transition
-
A. Lopes. Dynamics of real polynomials on the plane and triple point phase transition. Math. Comp. Mod. 13 (1990), 17-32.
-
(1990)
Math. Comp. Mod.
, vol.13
, pp. 17-32
-
-
Lopes, A.1
-
11
-
-
0000543733
-
A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems
-
V. I. Oseledec. A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19 (1968), 197-231.
-
(1968)
Trans. Moscow Math. Soc.
, vol.19
, pp. 197-231
-
-
Oseledec, V.I.1
-
13
-
-
0002897510
-
Applications conservant une mesure absolument continue par rapport à dx sur [0,1]
-
D. Ruelle. Applications conservant une mesure absolument continue par rapport à dx sur [0,1]. Comm. Math. Phys. 55 (1977), 47-51.
-
(1977)
Comm. Math. Phys.
, vol.55
, pp. 47-51
-
-
Ruelle, D.1
-
14
-
-
21144472608
-
Regularity and other properties of absolutely continuous invariant measures for the quadratic family
-
M. Rychlik and E. Sorets. Regularity and other properties of absolutely continuous invariant measures for the quadratic family. Comm. Math. Phys. 150 (1992), 217-236.
-
(1992)
Comm. Math. Phys.
, vol.150
, pp. 217-236
-
-
Rychlik, M.1
Sorets, E.2
|