-
2
-
-
0019635237
-
The ellipsoid method: A survey
-
R. G. BLAND, D. GOLDFARB, AND M. J. TODD, The ellipsoid method: A survey, Oper. Res., 29 (1981), pp. 1039-1091.
-
(1981)
Oper. Res.
, vol.29
, pp. 1039-1091
-
-
Bland, R.G.1
Goldfarb, D.2
Todd, M.J.3
-
3
-
-
0022162091
-
The ellipsoid method generates dual variables
-
B. P. BURRELL AND M. J. TODD, The ellipsoid method generates dual variables, Math. Oper. Res., 10 (1985), pp. 688-700.
-
(1985)
Math. Oper. Res.
, vol.10
, pp. 688-700
-
-
Burrell, B.P.1
Todd, M.J.2
-
4
-
-
0004139889
-
-
W. H. Freeman and Company, San Francisco, CA
-
V. CHVÁTAL, Linear Programming, W. H. Freeman and Company, San Francisco, CA, 1980.
-
(1980)
Linear Programming
-
-
Chvátal, V.1
-
5
-
-
0019928396
-
On the non-polynomiality of the relaxation method for systems of linear inequalities
-
J. L. GOFFIN, On the non-polynomiality of the relaxation method for systems of linear inequalities, Math. Programming, 22 (1982), pp. 93-103.
-
(1982)
Math. Programming
, vol.22
, pp. 93-103
-
-
Goffin, J.L.1
-
6
-
-
0020132663
-
Modifications and implementation of the ellipsoid algorithm for linear programming
-
D. GOLDFARB AND M. J. TODD, Modifications and implementation of the ellipsoid algorithm for linear programming, Math. Programming, 23 (1982), pp. 1-19.
-
(1982)
Math. Programming
, vol.23
, pp. 1-19
-
-
Goldfarb, D.1
Todd, M.J.2
-
8
-
-
0002940114
-
Extremum problems with inequalities as subsidiary conditions
-
(Courant Anniversary Volume), Interscience, New York
-
F. JOHN, Extremum problems with inequalities as subsidiary conditions, in Studies and Essays (Courant Anniversary Volume), Interscience, New York, 1948.
-
(1948)
Studies and Essays
-
-
John, F.1
-
9
-
-
51249181779
-
A new polynomial-time algorithm for linear programming
-
N. K. KARMARKAR, A new polynomial-time algorithm for linear programming, Combinatorica, 4 (1984), pp. 373-395.
-
(1984)
Combinatorica
, vol.4
, pp. 373-395
-
-
Karmarkar, N.K.1
-
10
-
-
0000769618
-
A polynomial algorithm for linear programming
-
L. G. KHACHIYAN, A polynomial algorithm for linear programming, Dokl. Akad. Nauk USSR, 244 (1979), pp. 1093-1096.
-
(1979)
Dokl. Akad. Nauk USSR
, vol.244
, pp. 1093-1096
-
-
Khachiyan, L.G.1
-
11
-
-
0042778011
-
On the complexity of approximating the maximal inscribed ellipsoid for a polytope
-
L. G. KHACHIYAN AND M. J. TODD, On the complexity of approximating the maximal inscribed ellipsoid for a polytope, Math. Programming, 61 (1993), pp. 137-159.
-
(1993)
Math. Programming
, vol.61
, pp. 137-159
-
-
Khachiyan, L.G.1
Todd, M.J.2
-
12
-
-
0005015952
-
On an algorithm for the minimization of convex functions
-
A. Y. LEVIN, On an algorithm for the minimization of convex functions, Soviet Math. Dokl., 6 (1965), pp. 286-290.
-
(1965)
Soviet Math. Dokl.
, vol.6
, pp. 286-290
-
-
Levin, A.Y.1
-
13
-
-
0040737329
-
-
Ph.D. thesis, Cornell University, Ithaca, NY
-
A. LIAO, Algorithms for Linear Programming via Weighted Centers, Ph.D. thesis, Cornell University, Ithaca, NY, 1992.
-
(1992)
Algorithms for Linear Programming Via Weighted Centers
-
-
Liao, A.1
-
14
-
-
0027815358
-
The ellipsoid algorithm using parallel cuts
-
A. LIAO AND M. J. TODD, The ellipsoid algorithm using parallel cuts, Comput. Optim. Appl., 2 (1993), pp. 299-316.
-
(1993)
Comput. Optim. Appl.
, vol.2
, pp. 299-316
-
-
Liao, A.1
Todd, M.J.2
-
15
-
-
85033759345
-
-
CCOP Report 93-10, School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY
-
_, Solving LP Problems via Weighted Centers, CCOP Report 93-10, School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY, 1993.
-
(1993)
Solving LP Problems Via Weighted Centers
-
-
-
16
-
-
0040737328
-
-
The Math-Works, Inc.
-
C. B. MOLER, J. LITTLE, S. BANGERT, AND S. KLEIMAN, Pro-Matlab User's Guide, The Math-Works, Inc., 1987.
-
(1987)
Pro-matlab User's Guide
-
-
Moler, C.B.1
Little, J.2
Bangert, S.3
Kleiman, S.4
-
17
-
-
84935269021
-
Pricing criteria in linear programming
-
N. Meggiddo, ed., Springer-Verlag, New York
-
J. L. NAZARETH, Pricing criteria in linear programming, in Progress in Mathematical Programming, N. Meggiddo, ed., Springer-Verlag, New York, 1989, pp. 105-130.
-
(1989)
Progress in Mathematical Programming
, pp. 105-130
-
-
Nazareth, J.L.1
-
18
-
-
0040737323
-
Location of the maximum on unimodal surfaces
-
D. J. NEWMAN, Location of the maximum on unimodal surfaces, J. Assoc. Comput. Mach., 12 (1965), pp. 395-398.
-
(1965)
J. Assoc. Comput. Mach.
, vol.12
, pp. 395-398
-
-
Newman, D.J.1
-
19
-
-
0023862337
-
A polynomial-time algorithm based on Newton's method for linear programming
-
J. RENEGAR, A polynomial-time algorithm based on Newton's method for linear programming, Math. Programming, 40 (1988), pp. 59-93.
-
(1988)
Math. Programming
, vol.40
, pp. 59-93
-
-
Renegar, J.1
-
20
-
-
0004267646
-
-
Princeton University Press, Princeton, NJ
-
R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
-
(1970)
Convex Analysis
-
-
Rockafellar, R.T.1
-
21
-
-
0039218959
-
Utilization of the operation of space dilatation in the minimization of convex functions
-
N. Z. SHOR, Utilization of the operation of space dilatation in the minimization of convex functions, Cybernetics, 6 (1970), pp. 7-15.
-
(1970)
Cybernetics
, vol.6
, pp. 7-15
-
-
Shor, N.Z.1
-
22
-
-
0002252730
-
Cut-off method with space extension in convex programming problems
-
_, Cut-off method with space extension in convex programming problems, Cybernetics, 13 (1977), pp. 94-96.
-
(1977)
Cybernetics
, vol.13
, pp. 94-96
-
-
-
23
-
-
0001292818
-
An analytical center for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming
-
Springer-Verlag, Berlin
-
G. SONNEVEND, An analytical center for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming, in Lecture Notes in Control and Information Sciences, No. 84, Springer-Verlag, Berlin, 1986, pp. 866-875.
-
(1986)
Lecture Notes in Control and Information Sciences
, vol.84
, pp. 866-875
-
-
Sonnevend, G.1
-
24
-
-
0000574381
-
The method of inscribed ellipsoids
-
S. P. TARASOV, L. G. KHACHIYAN, AND I. I. ERLICH, The method of inscribed ellipsoids, Sov. Math. Dokl., 37 (1988), pp. 226-230.
-
(1988)
Sov. Math. Dokl.
, vol.37
, pp. 226-230
-
-
Tarasov, S.P.1
Khachiyan, L.G.2
Erlich, I.I.3
-
25
-
-
0013107819
-
-
Technical Report 419, School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY
-
M. J. TODD, Some Remarks on the Relaxation Method for Linear Inequalities, Technical Report 419, School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY, 1979.
-
(1979)
Some Remarks on the Relaxation Method for Linear Inequalities
-
-
Todd, M.J.1
-
26
-
-
0005664122
-
On minimum volume ellipsoids containing part of a given ellipsoid
-
_, On minimum volume ellipsoids containing part of a given ellipsoid, Math. Oper. Res., 7 (1980), pp. 253-261.
-
(1980)
Math. Oper. Res.
, vol.7
, pp. 253-261
-
-
-
27
-
-
0009180741
-
Improved bounds and containing ellipsoids in Karmarkar's linear programming algorithm
-
_, Improved bounds and containing ellipsoids in Karmarkar's linear programming algorithm, Math. Oper. Res., 13 (1988), pp. 650-659.
-
(1988)
Math. Oper. Res.
, vol.13
, pp. 650-659
-
-
-
28
-
-
0001536423
-
A new algorithm for minimizing convex functions over convex sets
-
P. M. VAIDYA, A new algorithm for minimizing convex functions over convex sets, Math. Programming, 73 (1996), pp. 291-341.
-
(1996)
Math. Programming
, vol.73
, pp. 291-341
-
-
Vaidya, P.M.1
-
29
-
-
0023416760
-
Karmarkar's algorithm and the ellipsoid method
-
Y. YE, Karmarkar's algorithm and the ellipsoid method, Oper. Res. Lett., 6 (1987), pp. 177-182.
-
(1987)
Oper. Res. Lett.
, vol.6
, pp. 177-182
-
-
Ye, Y.1
-
30
-
-
0007639972
-
Informational complexity and efficient, methods for the solution of convex extremal problems
-
D. B. YUDIN AND A. S. NEMIROVSKII, Informational complexity and efficient, methods for the solution of convex extremal problems, Matekon, 13 (1976), pp. 3-25.
-
(1976)
Matekon
, vol.13
, pp. 3-25
-
-
Yudin, D.B.1
Nemirovskii, A.S.2
|