-
1
-
-
0001047377
-
A construction for vertex-transitive graphs
-
B. Alspach and T. D. Parsons. A construction for vertex-transitive graphs. Can. J. Math. 34 (1982) 307-318.
-
(1982)
Can. J. Math.
, vol.34
, pp. 307-318
-
-
Alspach, B.1
Parsons, T.D.2
-
2
-
-
84985441568
-
Vertex-transitive graphs of order 2p
-
B. Alspach and R. J. Sutcliffe, Vertex-transitive graphs of order 2p. Ann. NY Acad. Sci. 319 (1979) 19-27.
-
(1979)
Ann. NY Acad. Sci.
, vol.319
, pp. 19-27
-
-
Alspach, B.1
Sutcliffe, R.J.2
-
5
-
-
1542717639
-
-
Cambridge University Press, London (reprinted Dover, New York, 1955)
-
W. Burnside, Theory of Groups of Finite Order, 2nd. ed. Cambridge University Press, London (1911) (reprinted Dover, New York, 1955).
-
(1911)
Theory of Groups of Finite Order, 2nd. Ed.
-
-
Burnside, W.1
-
7
-
-
0012916399
-
More odd graph theory
-
C. D. Godsil, More odd graph theory. Discrete Math. 32 (1980) 205-217.
-
(1980)
Discrete Math.
, vol.32
, pp. 205-217
-
-
Godsil, C.D.1
-
8
-
-
45949126460
-
Primitive permutation groups of odd degree with an application to projective planes
-
W. M. Kantor, Primitive permutation groups of odd degree with an application to projective planes. J. Algebra 106 (1987) 15-45.
-
(1987)
J. Algebra
, vol.106
, pp. 15-45
-
-
Kantor, W.M.1
-
9
-
-
84915890137
-
Primitive permutation groups containing an element of large prime order
-
M. W. Liebeck and J. Saxl, Primitive permutation groups containing an element of large prime order. J. London Math. Soc. Series 2 31 (1985) 365-383.
-
(1985)
J. London Math. Soc. Series 2
, vol.31
, pp. 365-383
-
-
Liebeck, M.W.1
Saxl, J.2
-
10
-
-
84966217702
-
Transitive graphs with fewer than twenty vertices
-
with a microfiche supplement
-
B. D. McKay, Transitive graphs with fewer than twenty vertices. Math. Comp. 33 (1979) 1101-1121, with a microfiche supplement.
-
(1979)
Math. Comp.
, vol.33
, pp. 1101-1121
-
-
McKay, B.D.1
-
11
-
-
0001903779
-
Vertex-transitive graphs which are not Cayley graphs, I
-
B. D. McKay and C. E. Praeger, Vertex-transitive graphs which are not Cayley graphs, I. J. Austral. Math. Soc. (A) 56 (1994) 53-63.
-
(1994)
J. Austral. Math. Soc. (A)
, vol.56
, pp. 53-63
-
-
McKay, B.D.1
Praeger, C.E.2
-
12
-
-
0041892751
-
Cayley properties of vertex symmetric graphs
-
D. Marušič, Cayley properties of vertex symmetric graphs. Ars Combinat. 16B (1983) 297-302.
-
(1983)
Ars Combinat.
, vol.16 B
, pp. 297-302
-
-
Marušič, D.1
-
14
-
-
84987589522
-
Characterising vertex-transitive pq-graphs with an imprimitive automorphism group
-
D. Marušič and R. Scapellato, Characterising vertex-transitive pq-graphs with an imprimitive automorphism group. J. Graph Theory 16 (1992) 375-387.
-
(1992)
J. Graph Theory
, vol.16
, pp. 375-387
-
-
Marušič, D.1
Scapellato, R.2
-
16
-
-
0013004149
-
Non-Cayley, vertex-transitive graphs of order twice the product of two odd primes
-
A. A. Miller and C. E. Praeger, Non-Cayley, vertex-transitive graphs of order twice the product of two odd primes. J. Algebr. Combinat. 3 (1994) 77-111.
-
(1994)
J. Algebr. Combinat.
, vol.3
, pp. 77-111
-
-
Miller, A.A.1
Praeger, C.E.2
-
17
-
-
0001988677
-
Symmetric graphs of order a product of two distinct primes
-
C. E. Praeger, R. J. Wang, and M. Y. Xu, Symmetric graphs of order a product of two distinct primes. J. Combinat. Theory B 58 (1993) 299-318.
-
(1993)
J. Combinat. Theory B
, vol.58
, pp. 299-318
-
-
Praeger, C.E.1
Wang, R.J.2
Xu, M.Y.3
-
18
-
-
0002190572
-
Vertex-primitive graphs of order a product of two distinct primes
-
C. E. Praeger and M. Y. Xu, Vertex-primitive graphs of order a product of two distinct primes. J. Combinat. Theory B 59 (1993) 245-266.
-
(1993)
J. Combinat. Theory B
, vol.59
, pp. 245-266
-
-
Praeger, C.E.1
Xu, M.Y.2
-
19
-
-
0041421707
-
A characterization of a class of symmetric graphs of twice prime valency
-
C. E. Praeger, M. Y. Xu, A characterization of a class of symmetric graphs of twice prime valency. Eur. J. Combinat. 10 (1989) 91-102.
-
(1989)
Eur. J. Combinat.
, vol.10
, pp. 91-102
-
-
Praeger, C.E.1
Xu, M.Y.2
-
20
-
-
0012965090
-
Vertex-transitive graphs that are not Cayley graphs
-
Kluwer, Netherlands
-
M. E. Watkins, Vertex-transitive graphs that are not Cayley graphs. Cycles and Rays. Kluwer, Netherlands (1990) 243-256.
-
(1990)
Cycles and Rays
, pp. 243-256
-
-
Watkins, M.E.1
|