-
1
-
-
0000136970
-
Sharpness of the phase transition in percolation models
-
AIZENMAN, M. and BARSKY, D. J. (1987). Sharpness of the phase transition in percolation models. Comm. Math. Phys. 108 489-526.
-
(1987)
Comm. Math. Phys.
, vol.108
, pp. 489-526
-
-
Aizenman, M.1
Barsky, D.J.2
-
2
-
-
0000236076
-
Exponential decay for subcritical contact and percolation processes
-
BEZUIDENHOUT, C. and GRIMMETT, G. (1991). Exponential decay for subcritical contact and percolation processes. Ann. Probab. 19 984-1009.
-
(1991)
Ann. Probab.
, vol.19
, pp. 984-1009
-
-
Bezuidenhout, C.1
Grimmett, G.2
-
3
-
-
0000959608
-
Gaussian fluctuations of connectivities in the subcritical regime of percolation
-
CAMPANINO, M., CHAYES, J. T. and CHAYES, L. (1991). Gaussian fluctuations of connectivities in the subcritical regime of percolation. Probab. Theory Related Fields 88 269-341.
-
(1991)
Probab. Theory Related Fields
, vol.88
, pp. 269-341
-
-
Campanino, M.1
Chayes, J.T.2
Chayes, L.3
-
6
-
-
0001240798
-
Existence of quasi-stationary distributions. A renewal dynamical approach
-
FERRARI, P. A., KESTEN, H., MARTÍNEZ, S. and PICCO, P. (1995). Existence of quasi-stationary distributions. A renewal dynamical approach. Ann. Probab. 23 501-521.
-
(1995)
Ann. Probab.
, vol.23
, pp. 501-521
-
-
Ferrari, P.A.1
Kesten, H.2
Martínez, S.3
Picco, P.4
-
8
-
-
0001101077
-
A ratio limit theorem for (sub) Markov chains on {1,2,...} with bounded jumps
-
KESTEN, H. (1995). A ratio limit theorem for (sub) Markov chains on {1,2,...} with bounded jumps. Adv. in Appl. Probab. 27 652-691.
-
(1995)
Adv. in Appl. Probab.
, vol.27
, pp. 652-691
-
-
Kesten, H.1
-
9
-
-
21844520722
-
Gaussian limit for critical oriented percolation in high dimensions
-
NGUYEN, B. G. and YANG, W-S. (1995). Gaussian limit for critical oriented percolation in high dimensions. J. Statist. Phys. 78 841-876.
-
(1995)
J. Statist. Phys.
, vol.78
, pp. 841-876
-
-
Nguyen, B.G.1
Yang, W.-S.2
-
10
-
-
0001722126
-
Quasi-stationary laws for Markov processes: Examples of an always proximate absorbing state
-
PAKES, A. (1995). Quasi-stationary laws for Markov processes: examples of an always proximate absorbing state. Adv. in Appl. Probab. 27 120-145.
-
(1995)
Adv. in Appl. Probab.
, vol.27
, pp. 120-145
-
-
Pakes, A.1
-
11
-
-
21344482874
-
Weak convergence of conditioned birth and death processes
-
ROBERTS, G. O. and JACKA, S. D. (1994). Weak convergence of conditioned birth and death processes. J. Appl. Probab. 31 90-100.
-
(1994)
J. Appl. Probab.
, vol.31
, pp. 90-100
-
-
Roberts, G.O.1
Jacka, S.D.2
-
12
-
-
0000564723
-
On quasi-stationary distributions in discrete-time Markov chains with a denumerable infinity of states
-
SENETA, E. and VERE-JONES, D. (1966). On quasi-stationary distributions in discrete-time Markov chains with a denumerable infinity of states. J. Appl. Probab. 3 403-434.
-
(1966)
J. Appl. Probab.
, vol.3
, pp. 403-434
-
-
Seneta, E.1
Vere-Jones, D.2
-
13
-
-
84972513565
-
Ergodic properties of nonnegative matrices I
-
VERE-JONES, D. (1967). Ergodic properties of nonnegative matrices I. Pacific J. Math. 22 361-396.
-
(1967)
Pacific J. Math.
, vol.22
, pp. 361-396
-
-
Vere-Jones, D.1
-
14
-
-
0001694745
-
Certain limit theorems of the theory of branching stochastic processes
-
YAGLOM, A. M. (1947). Certain limit theorems of the theory of branching stochastic processes. Dokl. Akad. Nauk SSSR 56 797-798.
-
(1947)
Dokl. Akad. Nauk SSSR
, vol.56
, pp. 797-798
-
-
Yaglom, A.M.1
|