-
1
-
-
21844501429
-
Kerr-Schild gravitational fields, in matter and the Kerr interior problem in general relativity
-
G. Magli, "Kerr-Schild gravitational fields, in matter and the Kerr interior problem in general relativity," J. Math. Phys. 36, 5877-5896 (1995).
-
(1995)
J. Math. Phys.
, vol.36
, pp. 5877-5896
-
-
Magli, G.1
-
2
-
-
33646535503
-
Gravitational field of a spinning mass as an example of algebraically special metric
-
R. P. Kerr, "Gravitational field of a spinning mass as an example of algebraically special metric," Phys. Rev. Lett. 11, 237, (1963); R. P. Kerr and A. Schild, "Some algebraic degenerate solutions of Einstein's gravitational field equations," Proc. Symp. Appl. Math. 17, 199, (1969).
-
(1963)
Phys. Rev. Lett.
, vol.11
, pp. 237
-
-
Kerr, R.P.1
-
3
-
-
33646535503
-
Some algebraic degenerate solutions of Einstein's gravitational field equations
-
R. P. Kerr, "Gravitational field of a spinning mass as an example of algebraically special metric," Phys. Rev. Lett. 11, 237, (1963); R. P. Kerr and A. Schild, "Some algebraic degenerate solutions of Einstein's gravitational field equations," Proc. Symp. Appl. Math. 17, 199, (1969).
-
(1969)
Proc. Symp. Appl. Math.
, vol.17
, pp. 199
-
-
Kerr, R.P.1
Schild, A.2
-
4
-
-
36849117833
-
An approach to gravitational radiation by a method of spin coefficients
-
E. T. Newman and R. Penrose, "An approach to gravitational radiation by a method of spin coefficients," J. Math. Phys. 3, 566-576 (1962).
-
(1962)
J. Math. Phys.
, vol.3
, pp. 566-576
-
-
Newman, E.T.1
Penrose, R.2
-
5
-
-
0007219827
-
Kerr-Schild metrics revisited. I. The ground state
-
L. A. Gergely and Z. Perjes, "Kerr-Schild metrics revisited. I. The ground state," J. Math. Phys. 35, 2438-2447 (1994); "Kerr-Schild metrics revisited. II. The complete vacuum solution," J. Math. Phys. 35, 2448-2462 (1994).
-
(1994)
J. Math. Phys.
, vol.35
, pp. 2438-2447
-
-
Gergely, L.A.1
Perjes, Z.2
-
6
-
-
21344494491
-
Kerr-Schild metrics revisited. II. The complete vacuum solution
-
L. A. Gergely and Z. Perjes, "Kerr-Schild metrics revisited. I. The ground state," J. Math. Phys. 35, 2438-2447 (1994); "Kerr-Schild metrics revisited. II. The complete vacuum solution," J. Math. Phys. 35, 2448-2462 (1994).
-
(1994)
J. Math. Phys.
, vol.35
, pp. 2448-2462
-
-
-
7
-
-
0000208497
-
Petrov type D perfect-fluid solutions in generalized Kerr-Schild form
-
J. Martin and J. M. M. Senovilla, "Petrov type D perfect-fluid solutions in generalized Kerr-Schild form," J. Math. Phys. 27, 265 (1986); E. Nahmad-Achar. "On generalized Kerr-Schild transformations," J. Math. Phys. 29, 1879 (1988).
-
(1986)
J. Math. Phys.
, vol.27
, pp. 265
-
-
Martin, J.1
Senovilla, J.M.M.2
-
8
-
-
0007286194
-
On generalized Kerr-Schild transformations
-
J. Martin and J. M. M. Senovilla, "Petrov type D perfect-fluid solutions in generalized Kerr-Schild form," J. Math. Phys. 27, 265 (1986); E. Nahmad-Achar. "On generalized Kerr-Schild transformations," J. Math. Phys. 29, 1879 (1988).
-
(1988)
J. Math. Phys.
, vol.29
, pp. 1879
-
-
Nahmad-Achar, E.1
-
10
-
-
9344269227
-
Solutions of the Einstein and Einstein-Maxwell equations
-
G. C. Debney, R. P. Kerr, and A. Schild, "Solutions of the Einstein and Einstein-Maxwell equations," J. Math. Phys. 10, 1842-1854 (1969).
-
(1969)
J. Math. Phys.
, vol.10
, pp. 1842-1854
-
-
Debney, G.C.1
Kerr, R.P.2
Schild, A.3
-
11
-
-
0000705858
-
Empty-space generalization of the Schwarzschild metric
-
E. T. Newman, L. Tamburino, and T. Unti, "Empty-space generalization of the Schwarzschild metric," J. Math. Phys. 4, 915-923 (1963).
-
(1963)
J. Math. Phys.
, vol.4
, pp. 915-923
-
-
Newman, E.T.1
Tamburino, L.2
Unti, T.3
-
12
-
-
24844443988
-
Properties of a solution of the Einstein equations with the cosmological constant
-
J. K. Kowalczyński and J. F. Plebański, "Properties of a solution of the Einstein equations with the cosmological constant," Acta Phys. Pol. B 8, 169-171 (1977).
-
(1977)
Acta Phys. Pol. B
, vol.8
, pp. 169-171
-
-
Kowalczyński, J.K.1
Plebański, J.F.2
-
13
-
-
0001727371
-
A generalization of the relativistic equilibrium equations for a non rotating star
-
G. Magli and J. Kijowski, "A generalization of the relativistic equilibrium equations for a non rotating star," Gen. Rel. Grav. 24, 139-158 (1992).
-
(1992)
Gen. Rel. Grav.
, vol.24
, pp. 139-158
-
-
Magli, G.1
Kijowski, J.2
-
14
-
-
0346575364
-
-
We choose relativistic units so that the speed of light and Newton's gravitational constant equal unity
-
We choose relativistic units so that the speed of light and Newton's gravitational constant equal unity.
-
-
-
-
15
-
-
0003599920
-
-
Cambridge U.P., Cambridge
-
D. Kramer, H. Stephani, E. Herlt, and M. MacCallum, Exact Solutions of the Einstein's Field Equations (Cambridge U.P., Cambridge, 1980).
-
(1980)
Exact Solutions of the Einstein's Field Equations
-
-
Kramer, D.1
Stephani, H.2
Herlt, E.3
MacCallum, M.4
-
16
-
-
34248994772
-
The gravitational field of a global monopole
-
See, e.g., M. Barriola and A. Vilenkin, "The gravitational field of a global monopole," Phys. Rev. Lett. 63, 341-343 (1989).
-
(1989)
Phys. Rev. Lett.
, vol.63
, pp. 341-343
-
-
Barriola, M.1
Vilenkin, A.2
-
17
-
-
0347205570
-
-
See also Ref. 12
-
See also Ref. 12.
-
-
-
-
18
-
-
0039480181
-
A conventional proof of Kerr's theorem
-
D. Cox and E. J. Flaherty, Jr., "A conventional proof of Kerr's theorem," Commun. Math. Phys. 47, 75-79 (1976).
-
(1976)
Commun. Math. Phys.
, vol.47
, pp. 75-79
-
-
Cox, D.1
Flaherty E.J., Jr.2
-
19
-
-
0345944172
-
-
It is easy to check that (5.4) is, in fact, equivalent to K̂Y = 0, namely, the function Y must belong to the kernel of the operator K
-
It is easy to check that (5.4) is, in fact, equivalent to K̂Y = 0, namely, the function Y must belong to the kernel of the operator K.
-
-
-
-
20
-
-
0010186181
-
Some simple type D solutions to the Einstein equations with sources
-
G. F. Torres del Castillo and J. F. Plebański, "Some simple type D solutions to the Einstein equations with sources," J. Math. Phys. 26, 477-481 (1985).
-
(1985)
J. Math. Phys.
, vol.26
, pp. 477-481
-
-
Torres Del Castillo, G.F.1
Plebański, J.F.2
-
21
-
-
36749108242
-
Lorentz covariant treatment of the Kerr-Schild geometry
-
M. Gürses and F. Gürsey, "Lorentz covariant treatment of the Kerr-Schild geometry," J. Math. Phys. 16, 2385-2390 (1975).
-
(1975)
J. Math. Phys.
, vol.16
, pp. 2385-2390
-
-
Gürses, M.1
Gürsey, F.2
|