메뉴 건너뛰기




Volumn 65, Issue 216, 1996, Pages 1717-1735

Explicit bounds for primes in residue classes

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0030500681     PISSN: 00255718     EISSN: None     Source Type: Journal    
DOI: 10.1090/S0025-5718-96-00763-6     Document Type: Article
Times cited : (74)

References (39)
  • 3
    • 0042936660 scopus 로고
    • An improvement of an inequality of Minkowski
    • MR 13:538b
    • N. C. Ankeny. An improvement of an inequality of Minkowski. Proc. Nat. Acad. Sci. U.S.A., 37:711-716, 1951. MR 13:538b
    • (1951) Proc. Nat. Acad. Sci. U.S.A. , vol.37 , pp. 711-716
    • Ankeny, N.C.1
  • 4
    • 0002526741 scopus 로고
    • The least quadratic non residue
    • MR 13:538c
    • N. C. Ankeny. The least quadratic non residue. Ann. Math. 52:65-72, 1952. MR 13:538c
    • (1952) Ann. Math. , vol.52 , pp. 65-72
    • Ankeny, N.C.1
  • 5
    • 84966198660 scopus 로고
    • Explicit bounds for primality testing and related problems
    • MR. 91m:11096
    • E. Bach. Explicit bounds for primality testing and related problems. Math. Comp., 55:355-380, 1990. MR. 91m:11096
    • (1990) Math. Comp. , vol.55 , pp. 355-380
    • Bach, E.1
  • 7
    • 84966212348 scopus 로고
    • Factoring with cyclotomic polynomials
    • MR 89k:11127
    • E. Bach and J. Shallit. Factoring with cyclotomic polynomials. Math. Comp., 52:201-219, 1989. MR 89k:11127
    • (1989) Math. Comp. , vol.52 , pp. 201-219
    • Bach, E.1    Shallit, J.2
  • 8
    • 84966249802 scopus 로고
    • Statistical evidence for small generating sets
    • MR 93k:11089
    • E. Bach and L. Huelsbergen. Statistical evidence for small generating sets. Math. Comp., 61(203):69-82, 1993. MR 93k:11089
    • (1993) Math. Comp. , vol.61 , Issue.203 , pp. 69-82
    • Bach, E.1    Huelsbergen, L.2
  • 9
    • 84976738616 scopus 로고
    • The area-time complexity of binary multiplication
    • [Erratum: ibid, 29:904, 1982.] MR 82i:68027
    • R. P. Brent and H. T. Kung. The area-time complexity of binary multiplication. J. ACM, 28:521-534, 1981. [Erratum: ibid, 29:904, 1982.] MR 82i:68027
    • (1981) J. ACM , vol.28 , pp. 521-534
    • Brent, R.P.1    Kung, H.T.2
  • 10
    • 0042435951 scopus 로고
    • On the least prime in an arithmetical progression
    • S. Chowla. On the least prime in an arithmetical progression. J. Indian Math. Soc., 2:1-3, 1934.
    • (1934) J. Indian Math. Soc. , vol.2 , pp. 1-3
    • Chowla, S.1
  • 11
    • 0038066372 scopus 로고
    • Estimates for the Chebyshev function ψ(x)-θ(x)
    • MR 86k:11005
    • N. Costa Pereira. Estimates for the Chebyshev function ψ(x)-θ(x). Math. Comp., 44:211-221, 1985. MR 86k:11005
    • (1985) Math. Comp. , vol.44 , pp. 211-221
    • Costa Pereira, N.1
  • 12
    • 0011573214 scopus 로고
    • Über den tschebotareffschen dichtigkeitssatz
    • M. Deuring. Über den Tschebotareffschen Dichtigkeitssatz. Math. Ann., 110:414-415, 1935.
    • (1935) Math. Ann. , vol.110 , pp. 414-415
    • Deuring, M.1
  • 13
    • 0041934953 scopus 로고
    • Beweis eines satzes über die arithmetische progression
    • Reprinted in Werke
    • P. G. Lejeune Dirichlet. Beweis eines Satzes über die arithmetische Progression. Bericht Ak. Wiss. Berlin, 108-110, 1837. Reprinted in Werke, 1:307-312.
    • (1837) Bericht Ak. Wiss. Berlin , pp. 108-110
    • Lejeune Dirichlet, P.G.1
  • 14
    • 0042936658 scopus 로고    scopus 로고
    • Reprinted in
    • P. G. Lejeune Dirichlet. Beweis eines Satzes über die arithmetische Progression. Bericht Ak. Wiss. Berlin, 108-110, 1837. Reprinted in Werke, 1:307-312.
    • Werke , vol.1 , pp. 307-312
  • 15
    • 0042484815 scopus 로고
    • Beweis des satzes, daß jede unbegrenzte arithmetische progression, deren erstes glied und differenz ganze zahlen ohne gemeinschaftlichen factor sind, unendlich viele primzahlen enthält
    • P. G. Lejeune Dirichlet. Beweis des Satzes, daß jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält. Abhand. Ak. Wiss. Berlin, 45-81, 1837-9. Reprinted in Werke, 1:313-342.
    • (1837) Abhand. Ak. Wiss. Berlin , pp. 45-81
    • Lejeune Dirichlet, P.G.1
  • 16
    • 0041934954 scopus 로고    scopus 로고
    • Reprinted in
    • P. G. Lejeune Dirichlet. Beweis des Satzes, daß jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält. Abhand. Ak. Wiss. Berlin, 45-81, 1837-9. Reprinted in Werke, 1:313-342.
    • Werke , vol.1 , pp. 313-342
  • 19
    • 84963042409 scopus 로고
    • Zero-free regions for Dirichlet L-functions and the least prime in an arithmetic progression
    • MR 93a:11075
    • D. R. Heath-Brown. Zero-free regions for Dirichlet L-functions and the least prime in an arithmetic progression. Proc. London Math. Soc., 64:265-338, 1991. MR 93a:11075
    • (1991) Proc. London Math. Soc. , vol.64 , pp. 265-338
    • Heath-Brown, D.R.1
  • 21
    • 0008058934 scopus 로고
    • Zeta-functions and L-functions
    • J. W. S. Cassels and A. Fröhlich, Eds. Academic Press. MR 36:1414
    • H. Heilbronn. Zeta-functions and L-functions. In Algebraic Number Theory, J. W. S. Cassels and A. Fröhlich, Eds. Academic Press, 1967. MR 36:1414
    • (1967) Algebraic Number Theory
    • Heilbronn, H.1
  • 22
    • 0000130651 scopus 로고
    • Die theorie der algebraischen zahlkörper
    • D. Hilbert. Die Theorie der algebraischen Zahlkörper. Jahresber. Deutsch. Math.-Verein., 4:175-546, 1897.
    • (1897) Jahresber. Deutsch. Math.-Verein. , vol.4 , pp. 175-546
    • Hilbert, D.1
  • 23
    • 0000985116 scopus 로고
    • On the least prime in an arithmetic progression, I. The basic theorem
    • MR 6:260b
    • Ju. V. Linnik. On the least prime in an arithmetic progression, I. The basic theorem. Mat. Sbornik, 15:139-178, 1944. MR 6:260b
    • (1944) Mat. Sbornik , vol.15 , pp. 139-178
    • Linnik, Ju.V.1
  • 24
    • 0002386442 scopus 로고
    • A bound for the least prime ideal in the Chebotarev density theorem
    • MR 81b:12013
    • J. Lagarias, H. Montgomery, and A. Odlyzko. A bound for the least prime ideal in the Chebotarev density theorem. Invent. Math., 54:271-296, 1979. MR 81b:12013
    • (1979) Invent. Math. , vol.54 , pp. 271-296
    • Lagarias, J.1    Montgomery, H.2    Odlyzko, A.3
  • 25
    • 0002111950 scopus 로고
    • Effective versions of the Chebotarev density theorem
    • A. Fröhlich, editor, Academic Press, London. MR 56:5506
    • J. Lagarias and A. Odlyzko. Effective versions of the Chebotarev density theorem. In A. Fröhlich, editor, Algebraic Number Fields, pages 409-464, Academic Press, London, 1977. MR 56:5506
    • (1977) Algebraic Number Fields , pp. 409-464
    • Lagarias, J.1    Odlyzko, A.2
  • 27
    • 0040716208 scopus 로고
    • Miller's primality test
    • MR 80c:10008
    • H. W. Lenstra Jr.. Miller's primality test. Inform. Process. Letters, 8(2):86-88, 1979. MR 80c:10008
    • (1979) Inform. Process. Letters , vol.8 , Issue.2 , pp. 86-88
    • Lenstra H.W., Jr.1
  • 28
    • 0042368118 scopus 로고
    • A reduction of the čebotarev density theorem to the cyclic case
    • MR 38:2117
    • C. R. MacCluer. A reduction of the Čebotarev density theorem to the cyclic case. Acta Arith., 15:45-47, 1968. MR 38:2117
    • (1968) Acta Arith. , vol.15 , pp. 45-47
    • MacCluer, C.R.1
  • 29
    • 84966201498 scopus 로고
    • A rapidly convergent series for computing ψ(z) and its derivatives
    • MR 81m:65028
    • P. McCullagh. A rapidly convergent series for computing ψ(z) and its derivatives. Math. Comp., 36:247-248, 1981. MR 81m:65028
    • (1981) Math. Comp. , vol.36 , pp. 247-248
    • McCullagh, P.1
  • 30
    • 0001749152 scopus 로고
    • Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: A survey of recent results
    • MR 91i:11154
    • A. Odlyzko. Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results. Sém Theor. Nombres Bordeaux, 2:119-141, 1990. MR 91i:11154
    • (1990) Sém Theor. Nombres Bordeaux , vol.2 , pp. 119-141
    • Odlyzko, A.1
  • 31
    • 0000442252 scopus 로고
    • Versions effectives du théorème de chebotarev sous l'hypothèse de riemann generalisée
    • J. Oesterlé. Versions effectives du théorème de Chebotarev sous l'hypothèse de Riemann generalisée. Soc. Math. France Astérisque, 61:165-167, 1979.
    • (1979) Soc. Math. France Astérisque , vol.61 , pp. 165-167
    • Oesterlé, J.1
  • 32
    • 84972540003 scopus 로고
    • Approximate formulas for some functions of prime numbers
    • MR 25:1139
    • J. B. Rosser and L. Schoenfeld. Approximate formulas for some functions of prime numbers. Ill. J. Math., 6:64-94, 1962. MR 25:1139
    • (1962) Ill. J. Math. , vol.6 , pp. 64-94
    • Rosser, J.B.1    Schoenfeld, L.2
  • 33
    • 84966201811 scopus 로고
    • Numerical computations concerning the ERH
    • MR 94b:11085
    • R. Rumely. Numerical computations concerning the ERH. Math. Comp., 61(203):415-440, 1993. MR 94b:11085
    • (1993) Math. Comp. , vol.61 , Issue.203 , pp. 415-440
    • Rumely, R.1
  • 34
    • 84968515930 scopus 로고
    • Searching for primitive roots in finite fields
    • MR 92e:11140
    • V. Shoup. Searching for primitive roots in finite fields. Math. Comp., 58:369-380, 1992. MR 92e:11140
    • (1992) Math. Comp. , vol.58 , pp. 369-380
    • Shoup, V.1
  • 35
    • 0000316172 scopus 로고
    • Bestimmung der dichtigkeit einer menge von primzahlen, welche zu einer gegebenen substitutionsklasse gehören
    • N. Tchebotarev. Bestimmung der Dichtigkeit einer Menge von Primzahlen, welche zu einer gegebenen Substitutionsklasse gehören. Math. Ann., 95:191-228, 1926.
    • (1926) Math. Ann. , vol.95 , pp. 191-228
    • Tchebotarev, N.1
  • 37
    • 4243746268 scopus 로고
    • Über die primzahlen der arithmetischen progression
    • P. Turán. Über die Primzahlen der arithmetischen Progression. Acta Sci. Math., 8:226-235, 1936/37.
    • (1936) Acta Sci. Math. , vol.8 , pp. 226-235
    • Turán, P.1
  • 38
    • 0041934947 scopus 로고
    • Greatest of the least primes in arithmetic progressions having a given modulus
    • MR 81e:10038
    • S. S. Wagstaff, Jr. Greatest of the least primes in arithmetic progressions having a given modulus. Math. Comp., 33:1073-1080, 1979. MR 81e:10038
    • (1979) Math. Comp. , vol.33 , pp. 1073-1080
    • Wagstaff S.S., Jr.1
  • 39
    • 0042936651 scopus 로고
    • Two results on the distribution of prime numbers
    • In Chinese. MR 34:7482
    • Y. Wang, S.-K. Hsieh, and K.-J. Yu. Two results on the distribution of prime numbers. Zhongguo Kexue Jishu Daxue Xuebao, 1:32-38, 1965. In Chinese. MR 34:7482
    • (1965) Zhongguo Kexue Jishu Daxue Xuebao , vol.1 , pp. 32-38
    • Wang, Y.1    Hsieh, S.-K.2    Yu, K.-J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.