-
3
-
-
0042936660
-
An improvement of an inequality of Minkowski
-
MR 13:538b
-
N. C. Ankeny. An improvement of an inequality of Minkowski. Proc. Nat. Acad. Sci. U.S.A., 37:711-716, 1951. MR 13:538b
-
(1951)
Proc. Nat. Acad. Sci. U.S.A.
, vol.37
, pp. 711-716
-
-
Ankeny, N.C.1
-
4
-
-
0002526741
-
The least quadratic non residue
-
MR 13:538c
-
N. C. Ankeny. The least quadratic non residue. Ann. Math. 52:65-72, 1952. MR 13:538c
-
(1952)
Ann. Math.
, vol.52
, pp. 65-72
-
-
Ankeny, N.C.1
-
5
-
-
84966198660
-
Explicit bounds for primality testing and related problems
-
MR. 91m:11096
-
E. Bach. Explicit bounds for primality testing and related problems. Math. Comp., 55:355-380, 1990. MR. 91m:11096
-
(1990)
Math. Comp.
, vol.55
, pp. 355-380
-
-
Bach, E.1
-
7
-
-
84966212348
-
Factoring with cyclotomic polynomials
-
MR 89k:11127
-
E. Bach and J. Shallit. Factoring with cyclotomic polynomials. Math. Comp., 52:201-219, 1989. MR 89k:11127
-
(1989)
Math. Comp.
, vol.52
, pp. 201-219
-
-
Bach, E.1
Shallit, J.2
-
8
-
-
84966249802
-
Statistical evidence for small generating sets
-
MR 93k:11089
-
E. Bach and L. Huelsbergen. Statistical evidence for small generating sets. Math. Comp., 61(203):69-82, 1993. MR 93k:11089
-
(1993)
Math. Comp.
, vol.61
, Issue.203
, pp. 69-82
-
-
Bach, E.1
Huelsbergen, L.2
-
9
-
-
84976738616
-
The area-time complexity of binary multiplication
-
[Erratum: ibid, 29:904, 1982.] MR 82i:68027
-
R. P. Brent and H. T. Kung. The area-time complexity of binary multiplication. J. ACM, 28:521-534, 1981. [Erratum: ibid, 29:904, 1982.] MR 82i:68027
-
(1981)
J. ACM
, vol.28
, pp. 521-534
-
-
Brent, R.P.1
Kung, H.T.2
-
10
-
-
0042435951
-
On the least prime in an arithmetical progression
-
S. Chowla. On the least prime in an arithmetical progression. J. Indian Math. Soc., 2:1-3, 1934.
-
(1934)
J. Indian Math. Soc.
, vol.2
, pp. 1-3
-
-
Chowla, S.1
-
11
-
-
0038066372
-
Estimates for the Chebyshev function ψ(x)-θ(x)
-
MR 86k:11005
-
N. Costa Pereira. Estimates for the Chebyshev function ψ(x)-θ(x). Math. Comp., 44:211-221, 1985. MR 86k:11005
-
(1985)
Math. Comp.
, vol.44
, pp. 211-221
-
-
Costa Pereira, N.1
-
12
-
-
0011573214
-
Über den tschebotareffschen dichtigkeitssatz
-
M. Deuring. Über den Tschebotareffschen Dichtigkeitssatz. Math. Ann., 110:414-415, 1935.
-
(1935)
Math. Ann.
, vol.110
, pp. 414-415
-
-
Deuring, M.1
-
13
-
-
0041934953
-
Beweis eines satzes über die arithmetische progression
-
Reprinted in Werke
-
P. G. Lejeune Dirichlet. Beweis eines Satzes über die arithmetische Progression. Bericht Ak. Wiss. Berlin, 108-110, 1837. Reprinted in Werke, 1:307-312.
-
(1837)
Bericht Ak. Wiss. Berlin
, pp. 108-110
-
-
Lejeune Dirichlet, P.G.1
-
14
-
-
0042936658
-
-
Reprinted in
-
P. G. Lejeune Dirichlet. Beweis eines Satzes über die arithmetische Progression. Bericht Ak. Wiss. Berlin, 108-110, 1837. Reprinted in Werke, 1:307-312.
-
Werke
, vol.1
, pp. 307-312
-
-
-
15
-
-
0042484815
-
Beweis des satzes, daß jede unbegrenzte arithmetische progression, deren erstes glied und differenz ganze zahlen ohne gemeinschaftlichen factor sind, unendlich viele primzahlen enthält
-
P. G. Lejeune Dirichlet. Beweis des Satzes, daß jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält. Abhand. Ak. Wiss. Berlin, 45-81, 1837-9. Reprinted in Werke, 1:313-342.
-
(1837)
Abhand. Ak. Wiss. Berlin
, pp. 45-81
-
-
Lejeune Dirichlet, P.G.1
-
16
-
-
0041934954
-
-
Reprinted in
-
P. G. Lejeune Dirichlet. Beweis des Satzes, daß jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält. Abhand. Ak. Wiss. Berlin, 45-81, 1837-9. Reprinted in Werke, 1:313-342.
-
Werke
, vol.1
, pp. 313-342
-
-
-
19
-
-
84963042409
-
Zero-free regions for Dirichlet L-functions and the least prime in an arithmetic progression
-
MR 93a:11075
-
D. R. Heath-Brown. Zero-free regions for Dirichlet L-functions and the least prime in an arithmetic progression. Proc. London Math. Soc., 64:265-338, 1991. MR 93a:11075
-
(1991)
Proc. London Math. Soc.
, vol.64
, pp. 265-338
-
-
Heath-Brown, D.R.1
-
21
-
-
0008058934
-
Zeta-functions and L-functions
-
J. W. S. Cassels and A. Fröhlich, Eds. Academic Press. MR 36:1414
-
H. Heilbronn. Zeta-functions and L-functions. In Algebraic Number Theory, J. W. S. Cassels and A. Fröhlich, Eds. Academic Press, 1967. MR 36:1414
-
(1967)
Algebraic Number Theory
-
-
Heilbronn, H.1
-
22
-
-
0000130651
-
Die theorie der algebraischen zahlkörper
-
D. Hilbert. Die Theorie der algebraischen Zahlkörper. Jahresber. Deutsch. Math.-Verein., 4:175-546, 1897.
-
(1897)
Jahresber. Deutsch. Math.-Verein.
, vol.4
, pp. 175-546
-
-
Hilbert, D.1
-
23
-
-
0000985116
-
On the least prime in an arithmetic progression, I. The basic theorem
-
MR 6:260b
-
Ju. V. Linnik. On the least prime in an arithmetic progression, I. The basic theorem. Mat. Sbornik, 15:139-178, 1944. MR 6:260b
-
(1944)
Mat. Sbornik
, vol.15
, pp. 139-178
-
-
Linnik, Ju.V.1
-
24
-
-
0002386442
-
A bound for the least prime ideal in the Chebotarev density theorem
-
MR 81b:12013
-
J. Lagarias, H. Montgomery, and A. Odlyzko. A bound for the least prime ideal in the Chebotarev density theorem. Invent. Math., 54:271-296, 1979. MR 81b:12013
-
(1979)
Invent. Math.
, vol.54
, pp. 271-296
-
-
Lagarias, J.1
Montgomery, H.2
Odlyzko, A.3
-
25
-
-
0002111950
-
Effective versions of the Chebotarev density theorem
-
A. Fröhlich, editor, Academic Press, London. MR 56:5506
-
J. Lagarias and A. Odlyzko. Effective versions of the Chebotarev density theorem. In A. Fröhlich, editor, Algebraic Number Fields, pages 409-464, Academic Press, London, 1977. MR 56:5506
-
(1977)
Algebraic Number Fields
, pp. 409-464
-
-
Lagarias, J.1
Odlyzko, A.2
-
27
-
-
0040716208
-
Miller's primality test
-
MR 80c:10008
-
H. W. Lenstra Jr.. Miller's primality test. Inform. Process. Letters, 8(2):86-88, 1979. MR 80c:10008
-
(1979)
Inform. Process. Letters
, vol.8
, Issue.2
, pp. 86-88
-
-
Lenstra H.W., Jr.1
-
28
-
-
0042368118
-
A reduction of the čebotarev density theorem to the cyclic case
-
MR 38:2117
-
C. R. MacCluer. A reduction of the Čebotarev density theorem to the cyclic case. Acta Arith., 15:45-47, 1968. MR 38:2117
-
(1968)
Acta Arith.
, vol.15
, pp. 45-47
-
-
MacCluer, C.R.1
-
29
-
-
84966201498
-
A rapidly convergent series for computing ψ(z) and its derivatives
-
MR 81m:65028
-
P. McCullagh. A rapidly convergent series for computing ψ(z) and its derivatives. Math. Comp., 36:247-248, 1981. MR 81m:65028
-
(1981)
Math. Comp.
, vol.36
, pp. 247-248
-
-
McCullagh, P.1
-
30
-
-
0001749152
-
Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: A survey of recent results
-
MR 91i:11154
-
A. Odlyzko. Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results. Sém Theor. Nombres Bordeaux, 2:119-141, 1990. MR 91i:11154
-
(1990)
Sém Theor. Nombres Bordeaux
, vol.2
, pp. 119-141
-
-
Odlyzko, A.1
-
31
-
-
0000442252
-
Versions effectives du théorème de chebotarev sous l'hypothèse de riemann generalisée
-
J. Oesterlé. Versions effectives du théorème de Chebotarev sous l'hypothèse de Riemann generalisée. Soc. Math. France Astérisque, 61:165-167, 1979.
-
(1979)
Soc. Math. France Astérisque
, vol.61
, pp. 165-167
-
-
Oesterlé, J.1
-
32
-
-
84972540003
-
Approximate formulas for some functions of prime numbers
-
MR 25:1139
-
J. B. Rosser and L. Schoenfeld. Approximate formulas for some functions of prime numbers. Ill. J. Math., 6:64-94, 1962. MR 25:1139
-
(1962)
Ill. J. Math.
, vol.6
, pp. 64-94
-
-
Rosser, J.B.1
Schoenfeld, L.2
-
33
-
-
84966201811
-
Numerical computations concerning the ERH
-
MR 94b:11085
-
R. Rumely. Numerical computations concerning the ERH. Math. Comp., 61(203):415-440, 1993. MR 94b:11085
-
(1993)
Math. Comp.
, vol.61
, Issue.203
, pp. 415-440
-
-
Rumely, R.1
-
34
-
-
84968515930
-
Searching for primitive roots in finite fields
-
MR 92e:11140
-
V. Shoup. Searching for primitive roots in finite fields. Math. Comp., 58:369-380, 1992. MR 92e:11140
-
(1992)
Math. Comp.
, vol.58
, pp. 369-380
-
-
Shoup, V.1
-
35
-
-
0000316172
-
Bestimmung der dichtigkeit einer menge von primzahlen, welche zu einer gegebenen substitutionsklasse gehören
-
N. Tchebotarev. Bestimmung der Dichtigkeit einer Menge von Primzahlen, welche zu einer gegebenen Substitutionsklasse gehören. Math. Ann., 95:191-228, 1926.
-
(1926)
Math. Ann.
, vol.95
, pp. 191-228
-
-
Tchebotarev, N.1
-
37
-
-
4243746268
-
Über die primzahlen der arithmetischen progression
-
P. Turán. Über die Primzahlen der arithmetischen Progression. Acta Sci. Math., 8:226-235, 1936/37.
-
(1936)
Acta Sci. Math.
, vol.8
, pp. 226-235
-
-
Turán, P.1
-
38
-
-
0041934947
-
Greatest of the least primes in arithmetic progressions having a given modulus
-
MR 81e:10038
-
S. S. Wagstaff, Jr. Greatest of the least primes in arithmetic progressions having a given modulus. Math. Comp., 33:1073-1080, 1979. MR 81e:10038
-
(1979)
Math. Comp.
, vol.33
, pp. 1073-1080
-
-
Wagstaff S.S., Jr.1
-
39
-
-
0042936651
-
Two results on the distribution of prime numbers
-
In Chinese. MR 34:7482
-
Y. Wang, S.-K. Hsieh, and K.-J. Yu. Two results on the distribution of prime numbers. Zhongguo Kexue Jishu Daxue Xuebao, 1:32-38, 1965. In Chinese. MR 34:7482
-
(1965)
Zhongguo Kexue Jishu Daxue Xuebao
, vol.1
, pp. 32-38
-
-
Wang, Y.1
Hsieh, S.-K.2
Yu, K.-J.3
|