메뉴 건너뛰기




Volumn 8, Issue 2, 1996, Pages 163-184

A Survey of Transfer Between Connectionist Networks

Author keywords

Network learning; Transfer

Indexed keywords


EID: 0030491430     PISSN: 09540091     EISSN: None     Source Type: Journal    
DOI: 10.1080/095400996116866     Document Type: Article
Times cited : (39)

References (62)
  • 4
    • 0003324736 scopus 로고
    • Adaptive learning networks: Development and application in the United States of algorithms related to GMDH
    • S.J. Farlow (Ed.), New York: Marcel Dekker
    • Barron, R.L., Mucciardi, A.N., Cook, F.J., Craig, J.N. & Barron, A.R. (1984) Adaptive learning networks: Development and application in the United States of algorithms related to GMDH. In S.J. Farlow (Ed.), Self-Organizing Methods in Modeling. New York: Marcel Dekker.
    • (1984) Self-Organizing Methods in Modeling
    • Barron, R.L.1    Mucciardi, A.N.2    Cook, F.J.3    Craig, J.N.4    Barron, A.R.5
  • 5
    • 0002007311 scopus 로고    scopus 로고
    • Learning internal representations
    • D.S. Touretzky, M.C. Mozer & M.E. Hasselmo (Eds), Cambridge, MA: MIT Press
    • Baxter, J. (1996) Learning internal representations. In D.S. Touretzky, M.C. Mozer & M.E. Hasselmo (Eds), Advances in Neural Information Processing Systems, Vol. 8. Cambridge, MA: MIT Press.
    • (1996) Advances in Neural Information Processing Systems , vol.8
    • Baxter, J.1
  • 6
    • 0026923465 scopus 로고
    • Learning and tuning fuzzy logic controllers through reinforcements
    • Berenji, H.R. & Khedkar, P. (1992) Learning and tuning fuzzy logic controllers through reinforcements. IEEE Transactions on Neural Networks, 3, 724-740.
    • (1992) IEEE Transactions on Neural Networks , vol.3 , pp. 724-740
    • Berenji, H.R.1    Khedkar, P.2
  • 10
    • 0005986550 scopus 로고
    • Learning classification with unlabeled data
    • J. Cowan, G. Tesauro & J. Alspector (Eds), San Francisco, CA: Morgan Kaufmann
    • de Sa, V.R. (1994) Learning classification with unlabeled data. In J. Cowan, G. Tesauro & J. Alspector (Eds), Advances in Neural Information Processing Systems, Vol. 6. San Francisco, CA: Morgan Kaufmann, pp. 112-119.
    • (1994) Advances in Neural Information Processing Systems , vol.6 , pp. 112-119
    • De Sa, V.R.1
  • 12
    • 0010207961 scopus 로고
    • Representation and structure in connectionist models
    • Center for Research in Language, University of California, San Diego, CA
    • Elman, J. (1989) Representation and structure in connectionist models. Technical Report 8903. Center for Research in Language, University of California, San Diego, CA.
    • (1989) Technical Report 8903
    • Elman, J.1
  • 13
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • D.S. Touretzky (Ed.), San Mateo, CA: Morgan Kaufmann
    • Fahlman, S.E. & Lebiere, C. (1990) The cascade-correlation learning architecture. In D.S. Touretzky (Ed.), Advances in Neural Information Processing Systems 2. San Mateo, CA: Morgan Kaufmann, pp. 524-532.
    • (1990) Advances in Neural Information Processing Systems 2 , pp. 524-532
    • Fahlman, S.E.1    Lebiere, C.2
  • 15
    • 0024656669 scopus 로고
    • Computational approaches to analogical reasoning: A comparative analysis
    • Hall, R.P. (1988) Computational approaches to analogical reasoning: A comparative analysis. Artificial Intelligence, 39, 39-71.
    • (1988) Artificial Intelligence , vol.39 , pp. 39-71
    • Hall, R.P.1
  • 18
    • 0030488027 scopus 로고    scopus 로고
    • Making a low-dimensional representation suitable for diverse tasks
    • Intrator, N. & Edelman, S. (1996) Making a low-dimensional representation suitable for diverse tasks. Connection Science, 8, 205-223.
    • (1996) Connection Science , vol.8 , pp. 205-223
    • Intrator, N.1    Edelman, S.2
  • 19
    • 84875570023 scopus 로고
    • Adaptive generalization in dynamic neural networks
    • L. Niklasson & M. Boden (Eds), Hillsdale, NJ: Lawrence Erlbaum
    • Jackson, S.A. & Sharkey, N.E. (1995) Adaptive generalization in dynamic neural networks. In L. Niklasson & M. Boden (Eds), Current Trends in Connectionism. Hillsdale, NJ: Lawrence Erlbaum.
    • (1995) Current Trends in Connectionism
    • Jackson, S.A.1    Sharkey, N.E.2
  • 21
    • 0001626107 scopus 로고
    • On the complexity of learning in shallow neural networks
    • Judd, S. (1988) On the complexity of learning in shallow neural networks. Journal of Complexity, 4, 177-192.
    • (1988) Journal of Complexity , vol.4 , pp. 177-192
    • Judd, S.1
  • 22
    • 33745607467 scopus 로고
    • Human category learning: Implications for backpropagation models
    • Kruschke, J.K. (1993) Human category learning: Implications for backpropagation models. Connection Science, 5, 3-36.
    • (1993) Connection Science , vol.5 , pp. 3-36
    • Kruschke, J.K.1
  • 23
    • 0030488028 scopus 로고    scopus 로고
    • Dimensional relevance shifts in category learning
    • Kruschke, J.K. (1996) Dimensional relevance shifts in category learning. Connection Science, 8, 225-247.
    • (1996) Connection Science , vol.8 , pp. 225-247
    • Kruschke, J.K.1
  • 25
    • 0004815420 scopus 로고
    • Receptive field spaces and class-based generalization from a single view in face recognition
    • Lando, M. & Edelman, S. (1995) Receptive field spaces and class-based generalization from a single view in face recognition. Network, 6, 551-576.
    • (1995) Network , vol.6 , pp. 551-576
    • Lando, M.1    Edelman, S.2
  • 26
    • 84875561979 scopus 로고
    • The effects of old learning on new in Hopfield and backpropagation nets
    • Microelectronics and Computer Technology Corporation (MCC)
    • Martin, G. (1988) The effects of old learning on new in Hopfield and backpropagation nets. Technical Report ACA-HI-019. Microelectronics and Computer Technology Corporation (MCC).
    • (1988) Technical Report ACA-HI-019
    • Martin, G.1
  • 27
    • 77957064197 scopus 로고
    • Catastrophic interference in connectionist networks: The sequential learning problem
    • McCloskey, M. & Cohen, N.J. (1989) Catastrophic interference in connectionist networks: The sequential learning problem. The Psychology of Learning and Motivation, 24.
    • (1989) The Psychology of Learning and Motivation , vol.24
    • McCloskey, M.1    Cohen, N.J.2
  • 28
    • 0030489954 scopus 로고    scopus 로고
    • Hypertransfer in neural networks
    • Murre, J.M.J. (1996) Hypertransfer in neural networks. Connection Science, 8, 249-258.
    • (1996) Connection Science , vol.8 , pp. 249-258
    • Murre, J.M.J.1
  • 30
    • 0000004260 scopus 로고
    • The similarity paradox in human learning: A resolution
    • Osgood, C.E. (1949) The similarity paradox in human learning: A resolution. Psychological Review, 56, 132-143.
    • (1949) Psychological Review , vol.56 , pp. 132-143
    • Osgood, C.E.1
  • 32
    • 0003826771 scopus 로고
    • Example based image analysis and synthesis
    • Massachusetts Institute of Technology, Center for Biological and Computational Learning
    • Poggio, T., Beymer, D. & Sashua, A. (1993) Example based image analysis and synthesis. Technical Report AI Memo No. 1431, CBCL Paper No. 80. Massachusetts Institute of Technology, Center for Biological and Computational Learning.
    • (1993) Technical Report AI Memo No. 1431, CBCL Paper No. 80
    • Poggio, T.1    Beymer, D.2    Sashua, A.3
  • 33
    • 0005890879 scopus 로고
    • Discriminability-based transfer between neural networks
    • C. Giles, S.J. Hanson & J.D. Cowan (Eds), San Mateo, CA: Morgan Kaufmann
    • Pratt, L.Y. (1993a) Discriminability-based transfer between neural networks. In C. Giles, S.J. Hanson & J.D. Cowan (Eds), Advances in Neural Information Processing Systems 5. San Mateo, CA: Morgan Kaufmann, pp. 204-211.
    • (1993) Advances in Neural Information Processing Systems 5 , pp. 204-211
    • Pratt, L.Y.1
  • 34
    • 84875557042 scopus 로고
    • Non-literal transfer among neural network learners
    • R.J. Mammone (Ed.), London: Chapman Hall, Chapter 11
    • Pratt, L.Y. (1993b) Non-literal transfer among neural network learners. In R.J. Mammone (Ed.), Artificial Neural Networks for Speech and Vision. London: Chapman Hall, Chapter 11.
    • (1993) Artificial Neural Networks for Speech and Vision
    • Pratt, L.Y.1
  • 35
    • 0043217280 scopus 로고
    • Transferring previously learned back-propagation neural networks to new learning tasks
    • Rutgers University Computer Science Department, New Brunswick, NJ
    • Pratt, L.Y. (1993c) Transferring previously learned back-propagation neural networks to new learning tasks. Technical Report ML-TR-37. Rutgers University Computer Science Department, New Brunswick, NJ.
    • (1993) Technical Report ML-TR-37
    • Pratt, L.Y.1
  • 36
    • 0041802527 scopus 로고
    • Experiments on the transfer of knowledge between neural networks
    • S. Hanson, G. Drastal & R. Rivest (Eds), Cambridge, MA: MIT Press, Chapter 19
    • Pratt, L.Y. (1994) Experiments on the transfer of knowledge between neural networks. In S. Hanson, G. Drastal & R. Rivest (Eds), Computational Learning Theory and Natural Learning Systems, Constraints and Prospects, Vol. 1. Cambridge, MA: MIT Press, Chapter 19, pp. 523-560.
    • (1994) Computational Learning Theory and Natural Learning Systems, Constraints and Prospects , vol.1 , pp. 523-560
    • Pratt, L.Y.1
  • 37
    • 0030501992 scopus 로고    scopus 로고
    • Transfer in cognition
    • Robins, A. (1996a) Transfer in cognition. Connection Science, 8, 185-203.
    • (1996) Connection Science , vol.8 , pp. 185-203
    • Robins, A.1
  • 38
    • 0030488029 scopus 로고    scopus 로고
    • Consolidation in neural networks and in the sleeping brain
    • Robins, A. (1996b) Consolidation in neural networks and in the sleeping brain. Connection Science, 8, 259-275.
    • (1996) Connection Science , vol.8 , pp. 259-275
    • Robins, A.1
  • 45
    • 0041714575 scopus 로고
    • Toward a model of consolidation: The retention and transfer of neural net task knowledge
    • Hillsdale, NJ: Lawrence Erlbaum
    • Silver, D.L. & Mercer, R.E. (1995) Toward a model of consolidation: The retention and transfer of neural net task knowledge. In Proceedings of the INNS World Congress on Neural Networks, Vol. III. Hillsdale, NJ: Lawrence Erlbaum, pp. 164-169.
    • (1995) Proceedings of the INNS World Congress on Neural Networks , vol.3 , pp. 164-169
    • Silver, D.L.1    Mercer, R.E.2
  • 46
    • 0030491431 scopus 로고    scopus 로고
    • The parallel transfer of task knowledge using dynamic learning rates based on a measure of relatedness
    • Silver, D.L. & Mercer, R.E. (1996) The parallel transfer of task knowledge using dynamic learning rates based on a measure of relatedness. Connection Science, 8, 277-294.
    • (1996) Connection Science , vol.8 , pp. 277-294
    • Silver, D.L.1    Mercer, R.E.2
  • 47
    • 0001027894 scopus 로고
    • Transfer of learning by composing solutions for elemental sequential tasks
    • Singh, S.P. (1992) Transfer of learning by composing solutions for elemental sequential tasks. Machine Learning, 8, 323-339.
    • (1992) Machine Learning , vol.8 , pp. 323-339
    • Singh, S.P.1
  • 49
    • 0042716090 scopus 로고
    • Rule-injection hints as a means of improving network performance and learning time
    • Berlin: Springer-Verlag
    • Suddarth, S. (1990) Rule-injection hints as a means of improving network performance and learning time. In Proceedings of the EUROSIP Workshop on Neural Networks. Berlin: Springer-Verlag.
    • (1990) Proceedings of the EUROSIP Workshop on Neural Networks
    • Suddarth, S.1
  • 50
    • 0002218307 scopus 로고
    • Symbolic neural systems and the use of hints for developing complex systems
    • Suddarth, S.C. & Holden, A. (1991) Symbolic neural systems and the use of hints for developing complex systems. International Journal of Man-Machine Studies, 35, 291-312.
    • (1991) International Journal of Man-Machine Studies , vol.35 , pp. 291-312
    • Suddarth, S.C.1    Holden, A.2
  • 51
    • 0026971570 scopus 로고
    • Adapting bias by gradient descent: An incremental version of delta-bar-delta
    • Sutton, R.S. (1992) Adapting bias by gradient descent: An incremental version of delta-bar-delta. In Proceedings of AAAI-92, pp. 171-176.
    • (1992) Proceedings of AAAI-92 , pp. 171-176
    • Sutton, R.S.1
  • 52
    • 84875569090 scopus 로고
    • Self-organizing neural network for optimum supervised learning
    • Purdue University School of Electrical Engineering, West Lafayette, IN
    • Tenorio, M.F. & Lee, W.-T. (1989) Self-organizing neural network for optimum supervised learning. Technical Report TR-EE 89-30. Purdue University School of Electrical Engineering, West Lafayette, IN.
    • (1989) Technical Report TR-EE 89-30
    • Tenorio, M.F.1    Lee, W.-T.2
  • 55
    • 0010687922 scopus 로고
    • Learning one more thing
    • Canada, Montreal
    • Thrun, S. & Mitchell, T.M. (1995) Learning one more thing. In Proceedings of IJCAI-95. Canada, Montreal, pp. 930-976.
    • (1995) Proceedings of IJCAI-95 , pp. 930-976
    • Thrun, S.1    Mitchell, T.M.2
  • 56
    • 0043217278 scopus 로고
    • Clustering learning tasks and the selective cross-task transfer of knowledge
    • Carnegie Mellon University, School of Computer Science, Pittsburgh, PA
    • Thrun, S. & O'Sullivan, J. (1995) Clustering learning tasks and the selective cross-task transfer of knowledge. Technical Report CMU-CS-95-209. Carnegie Mellon University, School of Computer Science, Pittsburgh, PA.
    • (1995) Technical Report CMU-CS-95-209
    • Thrun, S.1    O'Sullivan, J.2
  • 58
    • 0003189388 scopus 로고
    • Interpretation of artificial neural networks: Mapping knowledge-based neural networks into rules
    • San Mateo, CA: Morgan Kaufmann
    • Towell, G.G. & Shavlik, J.W. (1992) Interpretation of artificial neural networks: Mapping knowledge-based neural networks into rules. In Advances in Neural Information Processing Systems 4. San Mateo, CA: Morgan Kaufmann, pp. 977-984.
    • (1992) Advances in Neural Information Processing Systems 4 , pp. 977-984
    • Towell, G.G.1    Shavlik, J.W.2
  • 59
    • 85158010005 scopus 로고
    • Refinement of approximate domain theories by knowledge-based neural networks
    • San Mateo, CA: Morgan Kaufmann
    • Towell, G.G., Shavlik, J.W. & Noordewier, M.O. (1990) Refinement of approximate domain theories by knowledge-based neural networks. In Proceedings of AAAI-90. San Mateo, CA: Morgan Kaufmann, pp. 861-866.
    • (1990) Proceedings of AAAI-90 , pp. 861-866
    • Towell, G.G.1    Shavlik, J.W.2    Noordewier, M.O.3
  • 60
    • 84935413199 scopus 로고
    • Modular construction of time-delay neural networks for speech recognition
    • Waibel, A. (1989) Modular construction of time-delay neural networks for speech recognition. Neural Computation, 1, 39-46.
    • (1989) Neural Computation , vol.1 , pp. 39-46
    • Waibel, A.1
  • 61
    • 0029517573 scopus 로고
    • A patient-adaptive neural network ECG patient monitoring algorithm
    • Vienna, Austria
    • Watrous, R. & Towell, G. (1995) A patient-adaptive neural network ECG patient monitoring algorithm. In Proceedings Computers in Cardiology. Vienna, Austria, pp. 229-232.
    • (1995) Proceedings Computers in Cardiology , pp. 229-232
    • Watrous, R.1    Towell, G.2
  • 62
    • 0007778387 scopus 로고
    • Node splitting: A constructive algorithm for feed-forward neural networks
    • J.E. Moody, S.J. Hanson & R.P. Lippmann (Eds), San Mateo, CA: Morgan Kaufmann
    • Wynne-Jones, M. (1992) Node splitting: A constructive algorithm for feed-forward neural networks. In J.E. Moody, S.J. Hanson & R.P. Lippmann (Eds), Advances in Neural Information Processing Systems 4. San Mateo, CA: Morgan Kaufmann, pp. 1072-1079.
    • (1992) Advances in Neural Information Processing Systems 4 , pp. 1072-1079
    • Wynne-Jones, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.