-
2
-
-
0020763656
-
The threshold behavior of epidemic models
-
BALL, F. G. (1983). The threshold behavior of epidemic models. J. Appl. Probab. 20 227-241.
-
(1983)
J. Appl. Probab.
, vol.20
, pp. 227-241
-
-
Ball, F.G.1
-
3
-
-
0026360189
-
Dynamic population epidemic models
-
BALL, F. G. (1991). Dynamic population epidemic models. Math. Biosci. 107 299-324.
-
(1991)
Math. Biosci.
, vol.107
, pp. 299-324
-
-
Ball, F.G.1
-
4
-
-
0000504567
-
The final size and severity of a generalised stochastic multitype epidemic model
-
BALL, F. G. and CLANCY, D. (1993). The final size and severity of a generalised stochastic multitype epidemic model. Adv. in Appl. Probab. 25 721-736.
-
(1993)
Adv. in Appl. Probab.
, vol.25
, pp. 721-736
-
-
Ball, F.G.1
Clancy, D.2
-
6
-
-
0010753139
-
Strong convergence of stochastic epidemics
-
BALL, F. G. and O'NEILL, P. D. (1994). Strong convergence of stochastic epidemics. Adv. in Appl. Probab. 26 629-655.
-
(1994)
Adv. in Appl. Probab.
, vol.26
, pp. 629-655
-
-
Ball, F.G.1
O'Neill, P.D.2
-
8
-
-
0029662494
-
Carrier-borne epidemic models incorporating population mobility
-
CLANCY, D. (1996). Carrier-borne epidemic models incorporating population mobility. Math. Biosci. 132 185-204.
-
(1996)
Math. Biosci.
, vol.132
, pp. 185-204
-
-
Clancy, D.1
-
10
-
-
0002024701
-
On the generalized "birth-and-death" process
-
KENDALL, D. G. (1948). On the generalized "birth-and-death" process. Ann. Math. Statist. 19 1-15.
-
(1948)
Ann. Math. Statist.
, vol.19
, pp. 1-15
-
-
Kendall, D.G.1
-
11
-
-
0000585349
-
Deterministic and stochastic epidemics in closed populations
-
Univ. California Press, Berkeley
-
KENDALL, D. G. (1956). Deterministic and stochastic epidemics in closed populations. Proc. Third Berkeley Symp. Math. Statist. Probab. 4 149-165. Univ. California Press, Berkeley.
-
(1956)
Proc. Third Berkeley Symp. Math. Statist. Probab.
, vol.4
, pp. 149-165
-
-
Kendall, D.G.1
-
12
-
-
0018242499
-
The epidemic in a closed population with all susceptibles equally vulnerable: Some results for large susceptible populations and small initial infections
-
METZ, J. A. J. (1978). The epidemic in a closed population with all susceptibles equally vulnerable: some results for large susceptible populations and small initial infections. Acta Biotheoretica 27 75-123.
-
(1978)
Acta Biotheoretica
, vol.27
, pp. 75-123
-
-
Metz, J.A.J.1
-
14
-
-
0000644794
-
Spatial contact models for ecological and epidemic spread
-
MOLLISON, D. (1977). Spatial contact models for ecological and epidemic spread. J. Roy. Statist. Soc. Ser. B 39 283-326.
-
(1977)
J. Roy. Statist. Soc. Ser. B
, vol.39
, pp. 283-326
-
-
Mollison, D.1
-
15
-
-
0030519210
-
Strong approximations for some open population epidemic models
-
O'NEILL, P. D. (1996). Strong approximations for some open population epidemic models. J. Appl. Probab. 33 448-457.
-
(1996)
J. Appl. Probab.
, vol.33
, pp. 448-457
-
-
O'Neill, P.D.1
-
16
-
-
0007254367
-
Interconnected birth and death processes
-
PURI, P. S. (1968). Interconnected birth and death processes. J. Appl. Probab. 5 334-349.
-
(1968)
J. Appl. Probab.
, vol.5
, pp. 334-349
-
-
Puri, P.S.1
-
17
-
-
0040959772
-
On a solution of the migration process and the application to a problem in epidemiology
-
RAMAN, S. and CHIANG, C. L. (1973). On a solution of the migration process and the application to a problem in epidemiology. J. Appl. Probab. 10 718-727.
-
(1973)
J. Appl. Probab.
, vol.10
, pp. 718-727
-
-
Raman, S.1
Chiang, C.L.2
-
18
-
-
0001694893
-
Asymptotic final size distribution for some chain-binomial processes
-
SCALIA-TOMBA, G. (1985). Asymptotic final size distribution for some chain-binomial processes. Adv. in Appl. Probab. 17 477-495.
-
(1985)
Adv. in Appl. Probab.
, vol.17
, pp. 477-495
-
-
Scalia-Tomba, G.1
-
19
-
-
0001088291
-
On the asymptotic final size distribution of epidemics in heterogeneous populations
-
Springer, New York
-
SCALIA-TOMBA, G. (1990). On the asymptotic final size distribution of epidemics in heterogeneous populations. In Stochastic Processes in Epidemic Theory. Lecture Notes in Biomath. 86 189-196. Springer, New York.
-
(1990)
Stochastic Processes in Epidemic Theory. Lecture Notes in Biomath.
, vol.86
, pp. 189-196
-
-
Scalia-Tomba, G.1
|