-
3
-
-
0001479176
-
-
referred to as BY
-
R. N. Bhatt and A. P. Young, Phys. Rev. Lett. 54, 924 (1985); Phys. Rev. B 37, 5606 (1988), (referred to as BY).
-
(1988)
Phys. Rev. B
, vol.37
, pp. 5606
-
-
-
5
-
-
0001566632
-
-
A. T. Ogielski and I. Morgenstern, Phys. Rev. Lett. 54, 928 (1985); A. T. Ogielski, Phys. Rev. B 32, 7384 (1985).
-
(1985)
Phys. Rev. B
, vol.32
, pp. 7384
-
-
Ogielski, A.T.1
-
8
-
-
0000079672
-
-
R. R. P. Singh and S. Chakravarty, Phys. Rev. Lett. 57, 245 (1986); Phys. Rev. B 36, 546 (1987); R. E. Hetzel, R. N. Bhatt, and R. R. P. Singh, Europhys. Lett. 22, 383 (1993).
-
(1986)
Phys. Rev. Lett.
, vol.57
, pp. 245
-
-
Singh, R.R.P.1
Chakravarty, S.2
-
9
-
-
33748997530
-
-
R. R. P. Singh and S. Chakravarty, Phys. Rev. Lett. 57, 245 (1986); Phys. Rev. B 36, 546 (1987); R. E. Hetzel, R. N. Bhatt, and R. R. P. Singh, Europhys. Lett. 22, 383 (1993).
-
(1987)
Phys. Rev. B
, vol.36
, pp. 546
-
-
-
10
-
-
84956065948
-
-
R. R. P. Singh and S. Chakravarty, Phys. Rev. Lett. 57, 245 (1986); Phys. Rev. B 36, 546 (1987); R. E. Hetzel, R. N. Bhatt, and R. R. P. Singh, Europhys. Lett. 22, 383 (1993).
-
(1993)
Europhys. Lett.
, vol.22
, pp. 383
-
-
Hetzel, R.E.1
Bhatt, R.N.2
Singh, R.R.P.3
-
13
-
-
0025447261
-
-
H.-O. Heuer, Comp. Phys. Comm. 59, 387 (1990); H. Rieger, J. Stat. Phys. 70 1063 (1993); N. Kawashima, N. Ito and Y. Kanada, Int. J. Mod. Phys. C 4, 525 (1993).
-
(1990)
Comp. Phys. Comm.
, vol.59
, pp. 387
-
-
Heuer, H.-O.1
-
14
-
-
21144480543
-
-
H.-O. Heuer, Comp. Phys. Comm. 59, 387 (1990); H. Rieger, J. Stat. Phys. 70 1063 (1993); N. Kawashima, N. Ito and Y. Kanada, Int. J. Mod. Phys. C 4, 525 (1993).
-
(1993)
J. Stat. Phys.
, vol.70
, pp. 1063
-
-
Rieger, H.1
-
15
-
-
0025447261
-
-
H.-O. Heuer, Comp. Phys. Comm. 59, 387 (1990); H. Rieger, J. Stat. Phys. 70 1063 (1993); N. Kawashima, N. Ito and Y. Kanada, Int. J. Mod. Phys. C 4, 525 (1993).
-
(1993)
Int. J. Mod. Phys. C
, vol.4
, pp. 525
-
-
Kawashima, N.1
Ito, N.2
Kanada, Y.3
-
16
-
-
85033748197
-
-
note
-
18) for these temperatures.
-
-
-
-
17
-
-
85033770087
-
-
private communication
-
As a partial check of the random number generator, we also did high precision runs for L = 6, 8 and 12 at the lowest temperature, Τ = 0.96180, using a stride of 1279, rather than 250, and with multiply, rather than XOR, since this generator is better for the Metropolis algorithm (P. Coddington, private communication). We find that the results are unchanged within statistical errors; in particular we still find a statistically significant increase in g with L.
-
-
-
Coddington, P.1
-
19
-
-
85033769254
-
-
note
-
In a random systems one can define the Binder ratio in different ways. Another possibility would be to determine the ratio of moments for a single sample and then average this over samples. However, there are systematic errors in evaluating the ratio. Since we obtain only a few statistically independent measurements for each sample, these systematic errors would be large and uncontrolled if the Binder ratio were determined in this way.
-
-
-
|